
THE JOURNAL OF THE LEARNING SCIENCES, 21: 626–649, 2012
Copyright © Taylor & Francis Group, LLC
ISSN: 1050-8406 print / 1532-7809 online
DOI: 10.1080/10508406.2011.633838

Rethinking Intensive Quantities via Guided
Mediated Abduction

Dor Abrahamson
Graduate School of Education

University of California, Berkeley

Some intensive quantities, such as slope, velocity, or likelihood, are perceptually
privileged in the sense that they are experienced as holistic, irreducible sensations.
However, the formal expression of these quantities uses a/b analytic metrics; for
example, the slope of a line is the quotient of its rise and run. Thus, whereas students’
sensation of an intensive quantity could serve as a powerful resource for grounding
its formal expression, accepting the mathematical form requires students to align the
sensation with a new way of reasoning about the phenomenon. I offer a case anal-
ysis of a middle school student who successfully came to understand the intensive
quantity of likelihood. The analysis highlights a form of reasoning called abduction
and suggests that sociocognitive processes can guide and mediate students’ abduc-
tive reasoning. Interpreting the child’s and tutor’s multimodal action through the
lens of abductive inference, I demonstrate the emergence of a proportional concept
as guided mediated objectification of tacit perception. This “gestalt first” process is
contrasted with traditional “elements first” approaches to building proportional con-
cepts, and I speculate on epistemic and cognitive implications of this contrast for the
design and instruction of these important concepts. In particular, my approach high-
lights an important source of epistemic difficulty for students as they learn intensive
quantities: the difficulty in shifting from intuitive perceptual conviction to mediated
disciplinary analysis. My proposed conceptualization of learning can serve as an
effective synthesis of traditional and reform-based mathematics instruction.

This paper offers a new perspective on the pedagogy of intensive quantities,
which are central yet persistently challenging topics in both science and math-
ematics curricula (Howe, Nunes, & Bryant, 2011; Nunes, Desil, & Bell, 2003;
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GUIDED MEDIATED ABDUCTION 627

J. L. Schwartz, 1988). In the physical sciences, an intensive quantity is a scale-
invariant property of a system—it does not depend on the system’s size or the
amount of material in the system. For example, the temperature of a system is the
same as the temperature of any part of it. Density, too, is an intensive property of a
substance, because it does not change in accordance with the particular amount of
substance under consideration. By contrast, mass and volume, which are measures
of the amount of a substance, are extensive properties. I am particularly interested
in what I call perceptually privileged intensive quantities (PPIQ) as they relate to
mathematics learning.

PPIQ such as slope, velocity, or likelihood present central dilemmas for
research on mathematics instruction. On the one hand, students arrive to the class-
room with rich intuitive understandings of these quantities. Granted, these are
naïve, holistic, and unarticulated understandings that are mostly manifest in every-
day activity and colloquial expression, such as situated dealings with the steepness
of a hill, the speed of a vehicle, or the likelihood of an event. Yet these naïve
understandings enable students to share a fundamental sense of what it is they
are studying with their teachers even before the teachers have introduced new
vocabulary, notation, and procedures. Moreover, students’ particular quantitative
sensations, such as “very steep,” can guide their evaluation of the information
inherent in the formal models, for example in comparing two slopes. On the other
hand, students learning PPIQ are expected to adopt radically new ways of seeing
and speaking about these quantities; in particular they are required to use quotient
(i.e., a/b) metrics, for example in rethinking steepness as rise over run.

What is not clear to researchers is how students accomplish the rethinking of
holistic sensation in analytic form such as a quotient. How do students align the
commonsense meaning of an intensive quantity and the meaning of its related
quotient metric? A better theoretical understanding of this process may inform
better design and instruction of these important concepts. Moreover, I believe that
determining how students rethink PPIQ would inform the theorization of math-
ematics learning more generally, because the naïve-versus-analytic polarization
of views typical of PPIQ learning brings into relief for scrutiny how instructors
and students negotiate contested views of situations and their models. Looking in
particular at intensive quantities, I consider the intriguing notion that instruction
should begin from phenomenal gestalts rather than from the a and b of the a/b
concepts. That is, students should first experience the sensation that an intensive
quantity evokes and only then learn to analyze and describe the phenomenon as a
measured quotient.

The conjecture that both naïve perceptions and mathematical analyses play
vital roles in PPIQ learning suggests the dialectical approach to conceptual
change (diSessa, 2008) as appropriate for studying this learning process, because
this approach draws explicitly on both cognitive and sociocultural theories to
explain the microgenesis of students’ understanding. The dialectical approach

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 B

er
ke

le
y]

 a
t 2

3:
18

 2
2 

O
ct

ob
er

 2
01

2 



628 ABRAHAMSON

is still nascent, and researchers are currently developing and exploring a variety
of constructs and methodologies to describe the complementarity of individual
and social factors in content learning (cf. diSessa, Philip, Saxe, Cole, & Cobb,
2010; Greeno & van de Sande, 2007; Halldén, Scheja, & Haglund, 2008). The
approach proposed in this paper is to view mathematics learning as guided medi-
ated abduction, my dialectical expansion of the logical inferential mechanism first
suggested by Peirce (1931–1958). To my knowledge, this is the first attempt to
carefully describe formal inferential structures and processes as inherently sit-
uated, embodied, distributed, and interpersonal. More broadly, I thus pursue a
view of mathematical learning as subjective cognitive achievement designed and
steered by cultural forces (see also Enyedy, 2005; Saxe, 2004).

Elsewhere I have sketched several cases of students using abductive reasoning
to make sense of cultural models for PPIQ (Abrahamson, 2008). The present paper
presents a dialectical case analysis of one middle school student’s guided medi-
ated abduction of likelihood. In what follows I unpack my theoretical structure
and then apply it to the case analysis.

THEORETICAL BACKGROUND AND EMPIRICAL CONTEXT

I propose a view of logical inference as socioculturally situated. Specifically
within educational contexts, I argue, logical inference can be construed as guided
mediated abduction, that is, as the appropriation of cultural forms through a heav-
ily scaffolded (yet) creative reasoning process. This view, I maintain, gives both
constructivist and sociocultural theorists footholds to conceptualize guided rein-
vention as a desirable pedagogy. I begin to build my thesis by elaborating on the
motivation for selecting PPIQ as a phenomenal class for the study of conceptual
change. Next I situate and elaborate on my thesis in the context of a particular
design for probability. Finally I explain abduction, demonstrate it by applying
it to learning processes supported by my design, and suggest its epistemic and
affective entailments.

Rethinking Appropriation: Toward an Empirically Based Dialectical View

The conjecture that humans perceive some intensive quantities holistically is sup-
ported by the empiricism of cognitive science (Gelman, 1998). For example,
Suzuki and Cavanagh (1998) identified a cognitive faculty for discriminating
shapes with similar or dissimilar aspect ratios, Resnick (1992) discussed every-
day proportional reasoning, Gigerenzer (1998) argued for the ecological roots of
humans’ sense for frequency, Xu and Vashti (2008) demonstrated infants’ capacity
to gauge the representativeness of statistical samples, and Thacker (2010) showed
middle school students’ sensitivity to relative steepness of line segments. Yet
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GUIDED MEDIATED ABDUCTION 629

what role might this tacit perceptual capacity play in understanding the analytic
reinterpretation of intensive quantities?

The relation between tacit and analytic constructions of quantities is nuanced,
and so are the pedagogical implications of this relation. Piaget and Inhelder
(1969) argued that the relation between innate perceptual capacity and the nat-
ural development of relevant logico-mathematical structurations is not direct but
rather is mediated through individuals’ reflective abstraction on their goal-oriented
spatial–temporal interactions. When these interactions are designed to support
mathematical learning, however, students’ intuitive perceptions may present edu-
cators with a double-edged sword because of the incompatibility of inferences
from intuitive and formal views on situations (Cobb, 1989; Fischbein, 1987;
Mack, 1990). In general, students are likely to resist formal analyses of sensory
information when the analyses re-parse their perception by dimensions and grada-
tions they had not attended to (Bamberger & diSessa, 2003). Granted, designers
can mitigate the clash of tacit and analytic views of phenomena by creating
representations of quantitative information that accommodate our species’ per-
ceptual inclinations (Abrahamson & Wilensky, 2007; Gigerenzer, Hell, & Blank,
1988), yet the pedagogical challenge for students to re-see phenomena analyti-
cally remains. And although teachers regularly help students re-see phenomena
(Alibali, Phillips, & Fischer, 2009; Goodwin, 1994; Stevens & Hall, 1998), the
question of how and why students might accept analytic construction as aligned
with intuitive judgment remains. An example might be useful at this point.

Although this paper ultimately focuses on an empirical case pertaining to the
intensive quantity of likelihood, I use for this example the intensive quantity of
slope. The rhetorical advantage of elaborating my thesis via slope rather than like-
lihood is that sensory perception of diagonal orientation is encoded directly on the
cortex (Hubel & Wiesel, 1962), whereas perception of likelihood is more epis-
temically complex—it is mediated via contextual mental construction, wherein
the property of chance is attributed as an apparent propensity of a situation
(M. Borovcnik, personal communication, August 15, 2011). Thus, slope and
chance are structurally akin for the purposes of discussing mediated abduction,
yet slope affords a simpler analysis.

Consider a child who has compared two inclined planes with respect to their
steepness and has indicated the steeper one. This child may resist an instructor’s
prompt to do the following: (a) attend to, discern, and mark the rise and run inher-
ent in each plane’s incline, possibly by inscribing a diagram of the plane lying
upon perpendicular axes of a Cartesian space; (b) measure these two extensive
quantities of rise and run in each plane using appropriate standard units (e.g.,
centimeters); (c) calculate the quotient of these two pairs’ measured values (e.g.,
9 cm/15 cm and 14 cm/20 cm); (d) accept these two numbers (i.e., 0.6 and 0.7) as
meaning the planes’ respective reified property of slope; and (e) infer that one
plane is steeper than the other because its slope value is greater (Thacker, 2010).
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630 ABRAHAMSON

(Later I return to the issue of causality inherent in the final phase, which I see
as implicating an emotionally challenging yet epistemically necessary rethink-
ing of naïve perceptions not as a priori synthetic truths but as tenuous sensations
warranting proof.)

Sociocultural theorists (Newman, Griffin, & Cole, 1989) explicitly perceive
no theoretical difficulty in students replacing their naïve view of a phenomenon
with the normative analytic view of the phenomenon. For these theorists, student
appropriation of normative views through participation in the social enactment
of cultural practice is the prevalent modus operandi of knowledge mediation.
In fact, this perspective posits that participation in social activity precedes an
understanding of the activity’s rationale:

It is not the case that the child first carries out the task because she/he shares the
adult’s definition of situation. It is precisely the reverse: she/he comes to share the
adult’s definition of situation because she/he carries out the task (through other-
regulation). (Wertsch, 1979, p. 20)1

Endorsing the Vygotskian perspective, I view mathematics learning as the
appropriation of disciplinary practice, and I examine how this practice is medi-
ated in the context of participating in socially enacted problem-solving activities
utilizing cultural–historical artifacts. At the same time, however, I have been
concerned that these models of learning undertheorize learners’ tacit perceptual
capacity and the cognitive operations upon which appropriation is predicated
(cf. Gelman, 1998; Karmiloff-Smith, 1988). That is, I accept that students can
be guided to enact cultural–historical solution procedures for a particular class of
mathematical problems prior to understanding the rationale of these procedures,
but I persist in asking how and why the students eventually arrive at under-
standing these rationales. That is, I do not see doing-before-understanding as a
“crime” (Freudenthal, 1971, p. 424; von Glasersfeld, 1987) just as long as stu-
dents can infer how the teacher’s structures cohere with and empower their earlier
understandings (Cazden, 1981; Lobato, Clarke, & Ellis, 2005; D. L. Schwartz &
Bransford, 1998).

1Vygotsky’s conception of social mediation has inspired many theorists. It has been elaborated,
for example, as: (a) students becoming fluent in the “leading discourse” concerning situated objects
(Sfard, 2002, 2007); (b) teachers’ “semiotic mediation” of mathematical re-descriptions for the situated
task-based manipulation of pedagogical artifacts (Bartolini Bussi & Mariotti, 2008; Mariotti, 2009);
(c) learners implicitly “instrumenting” themselves with conceptual systems inherent to objects they
“instrumentalize” to attain their objectives (Artigue, 2002; Vérillon & Rabardel, 1995); (d) members of
a community of practice routinizing the use of available cultural forms as the means of accomplishing
personal goals for the solution of collective problems (Saxe, 2004); and (e) students appropriating
available objects and inscriptions in the learning environment as semiotic means of objectifying their
presymbolic notions regarding quantitative properties in situated problems (Radford, 2003).
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GUIDED MEDIATED ABDUCTION 631

In Abrahamson (2009b) I focused on the objects that students are guided to
generate in these instructional activities—objects that instructors view as consti-
tuting analytic models of some phenomenon under scrutiny yet that students do
not yet see as such. Building on my interpretations of a case analysis, I suggested
that students perform heuristic semiotic leaps by which they determine a way of
seeing the objects as signifying their own naïve sensation regarding the properties
in question. Once they see an artifact as a viable model of their tacit judgment, stu-
dents retroactively validate as trustworthy and meaningful the procedure leading
to the construction of the model.

In this paper I return to the case analysis as a means of elaborating on my
proposed construct of guided mediated abduction. By way of setting the grounds
for an explanation of mediated abduction, I now introduce the empirical context
of the case.

A Design for Probability as a Context for Studying Guided Mediated
Abduction

The empirical data I draw on for this study were collected during an interview-
based pilot implementation of an experimental mathematics mini-unit on prob-
ability. The PPIQ in this unit was “likelihood” (Xu & Vashti, 2008), and the
situation was modeled mathematically as the quotient of “number of favorable
events in the event space / total number of events in the event space” (p = .5). For
more comprehensive treatments of the design project, including a grounding of its
rationale in research on probabilistic reasoning, see Abrahamson (2009b, 2009c,
2011).

In this study, participants were asked to examine an urn-type random genera-
tor: a box containing a mixture of marbles of two colors with equal numbers of
green and blue marbles as well as a utensil for drawing out of the box samples
of exactly four marbles (see Figure 1a). Unlike literally all designs for probability
involving random generators, such as coins, dice, or spinners, at this point we did
not let the participant experiment with the random generator so that no samples
were drawn. Instead, once the participants understood how the device worked,
we asked them to predict outcomes of running this experiment. Generally speak-
ing, participants predicted correctly that the most likely sample would have two
green and two blue marbles (hence “2g2b”), and asked to support this response
they alluded to the equal numbers of green and blue marbles in the box. Next we
guided the participants to color in template cards (see Figure 1b) so as to construct
the experiment’s event space through an algorithmic process formally known as
combinatorial analysis (see Figure 1c). Namely, participants were to find all of the
possible combinations (0g4b, 1g3b, 2g2b, 3g1b, 4g0b) and, for each combination,
find all distinguishable four-element permutations (1, 4, 6, 4, and 1 permutations,
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632 ABRAHAMSON

(a) (b) (c)

FIGURE 1 Materials used in a design for probability: (a) the marbles scooper, a random
generator for drawing out ordered samples from a box full of marbles of two colors; (b) a card
for constructing the experiment’s event space (a stack of such cards was provided, as were
two crayons, and students colored in all possible outcomes); and (c) a combinations tower,
a distributed event space of the marbles-scooping experiment anticipating the conventional
histogram representation of actual outcome distributions (p = .5).

respectively, for the five classes). We then asked them to examine what they had
built and reflect on their earlier prediction.

A mathematically knowledgeable view of the event space triangulates the naïve
prediction of a 2g2b plurality, because there are more elemental events with
exactly two shaded cells as compared to other columns. However, the partici-
pants did not initially share this view. They found the analysis surprising, because
it parsed the phenomenon along dimensions that they had not attended to and
therefore included information that appeared to them as irrelevant to the prob-
lem as stated or as referring to different objects. Specifically, the event space
displayed permutations and not only combinations, whereas the participants had
not been attending to the internal order of green/blue marbles in the scooper but
only to overall numbers by color (cf. English, 2005). The intervention thus gen-
erated interactions wherein participants were encouraged to perceive an analytic
model of a phenomenon as indexing their gestalt sensation of the phenomenon.
Eventually the students accepted the artifact they had built as a representation
of the phenomenon’s focal quantitative properties. In particular, they indicated
the plurality of 2g2b elements in the event space as implying a plurality of 2g2b
experiment outcomes.

In the next subsections, and later in the case analysis, I scrutinize the interaction
dynamics between the researcher and participant as they negotiated competing
perceptions of the phenomenon and its model. I attempt to identify “cognitive”
and “sociocultural” factors that apparently contributed to the students’ successful
alignments. The rhetorical structure is as follows. I first apply Peirce’s construct of
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GUIDED MEDIATED ABDUCTION 633

abduction to plot the participants’ deliberations as a triadic inferential reasoning
process. Then I cast upon this triadic structure a Vygotskian perspective that fore-
grounds heavy-handed social mediation inherent to the inferential process. In so
doing, I hope to demonstrate how the instructor’s multimodal utterance framed
the material resources both perceptually and socioepistemically and, in turn, how
these actions stimulated and guided the student to figure out the mathematical
principle targeted by the pedagogical design. That is, I believe that abductive infer-
ence does not transpire in an unsituated void. Rather, from a dialectical perspective
I interpret abduction as crucially drawing on cultural resources.

Thus, in the remainder of this section I explain Peirce’s construct of abduction
that frames my dialectical inquiry of guided reinvention. This general theoretical
presentation of guided mediated abduction foreshadows the empirical section of
the paper, in which I demonstrate mediated abductive inference in a case analysis
featuring a child who is guided to reinvent the PPIQ of likelihood.

Abduction and Artifacts

This subsection is composed of three parts. I begin with a general explanation
concerning the nature of abductive reasoning. I then build on this introduction to
elaborate a dialectical view of guided reinvention as mediated abduction. Finally I
support the plausibility of my view by modeling the probability activity, which
I outlined earlier, along the lines of mediated abduction. These structures are
implemented in a later section, where I offer a case analysis of guided reinvention.

What abduction is. Abduction, a form of inferential reasoning most closely
associated with the philosopher C. S. Peirce (1931–1958), can be explained
through comparison with the more familiar constructs of deduction and induc-
tion. Formally speaking, deduction, induction, and abduction are logical inference
sequences, and each is modeled as a triadic structure leading from a premise
through to a proposition whose truth is necessary (deduction), apparent (induc-
tion), or possible (abduction). All three types of inference are predicated on the
epistemological framing that within any situation under inquiry there is some gen-
eral case that necessarily implies a local result due to some rule. The rule assigns
to all members of some class of entities a particular property, the case states that a
specific entity is a member of the class, and the result specifies that the particular
entity (therefore) bears the property in question. An individual person entering a
situation may have only partial knowledge of the totality of these three notions.
Which of these three notions the individual initially knows dictates the type of
inference required in order to obtain more complete knowledge of the situation.

The bean situation and its variants are often used in treatises on inferential
reasoning comparing deduction, induction, and abduction. The situation involves
a large sack of beans on the floor and a small pile of white beans on the table.
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634 ABRAHAMSON

Note in particular how each of the three inference mechanisms can be expressed
as a different permutation of the case–rule–result inference triad:

● Deduction. If I know that all of the beans in a sack are white (the rule)
and that a pile of beans is from this sack (the case), then I can confidently
deduce that the pile of beans is exclusively white (the result).

● Induction. If I know that a pile of beans is all from a sack (case) and that
the pile is all white (result), then I have grounds to induce that perhaps all
of the beans in the sack are white (rule).

● Abduction. If I know that all of the beans in a sack are white (rule) and that
a pile of beans is all white (result), I may abduce that the pile is from the
sack (case).

This event of finding white beans on a table, mundane as it seems, should be
taken as a parable for the discovery of any unexplained phenomenon, such as
in scientific inquiry, when the findings are compelling but initially cannot be
accounted for.

Following Shank (1987, 1998), I use a modified presentation of the abductive
triad: Instead of rule–result–case I use result–rule–case. This modified version
lends the inferential mechanism greater phenomenological and cognitive viability.
Namely, although the person entering the bean situation implicitly knows the rule
prior to the inquiry process, the rule is not on the fore of the person’s mind; con-
sequently, recalling, selecting, and applying this rule occurs only after the person
has encountered the puzzling result and begun to reason about it. Also following
Shank, I interpolate into my narrative hypothetical inner speech that may render
the paradigmatic bean situation more reminiscent of what a scientist or student
may subjectively experience:

I have just entered a room and am surprised to find upon a table a pile of white beans
(result). I do not know for a fact where these beans came from. Yet as I consider this
question, it occurs to me that a nearby sack contains exclusively white beans (rule).
Now, if only it were true that the pile of beans is from the bag (case), it would make
sense that all of these beans are white (result).

Again, what is unique about abduction, as portrayed in the bean example, is
that elements in the perceptual field that ultimately bore critical information for
the solution of the conundrum were not initially prominent aspects of the situation.
Rather, only upon facing the perplexing presence of a pile of white beans did the
individual engage in explorative reasoning through which she first detected the
sack and implicated it as implying a candidate rule attributing the beans’ color to
their plausible origin. In the present case study, too, the child is offered a “case”
as a means of rethinking an intensive quantity “result,” however the child initially

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 B

er
ke

le
y]

 a
t 2

3:
18

 2
2 

O
ct

ob
er

 2
01

2 



GUIDED MEDIATED ABDUCTION 635

does not consider some elements of this case as pertinent to the situation. The
pertinence of the entire case emerges even as the child determines a rule justifying
this pertinence in light of the evident result.2

Note also the crucial yet tentative attribution of “truth” to the case. The guided
mediated abduction conjecture problematizes this attribution by recognizing its
socioepistemic construction. Namely, when an instructor proposes a cultural arti-
fact as constituting a model of a situation under inquiry, it is socially incumbent
upon the student to comply with this proposal and adopt the artifact as such. Yet
I am interested in whether and how the student abduces the artifact’s histori-
cal logic (see Harel, in press, on social vs. intellectual needs). Moreover, I am
interested in how the syllogistic architecture of inferential processes mediates a
transition of conviction and causality from a phenomenon to its model.

Abduction as guided reinvention. Since Athenian antiquity, logical infer-
ence has been positioned as a rarified, insulated cognitive process that ties
premises through to conclusions using the “power of the mind” alone. Syllogistic
reasoning and, moreover, its reification and formalization were regarded as a
great epistemic achievement of the emerging Western psyche, so much so that
the capacity to reason thus was evaluated as marking advanced civilizations.
This appeal for the transcendent nature of logical inference was revisited and
bolstered from the Enlightenment through to the 20th century by some philoso-
phers of science. Notably, Hans Reichenbach (1956) attempted to purge inferential
reasoning of any semblance of anthropomorphism by conceptualizing intuitive
reasoning as a component of induction.3 This historical, popular, and formal fram-
ing of logical processes as an exercise of sheer intelligence, however, is liable to
preclude a researcher’s attention to the necessarily mediated, situated, and col-
laborative nature of intellective competence (cf. Bamberger, 2011; Lee, 2006;
Sawyer, 2007). Furthermore, any notion of inferential reasoning as a solipsistic
intellective activity becomes absurd in the context of educational research into
mathematical learning, wherein psychological trajectories toward reinvention are
paved out a priori for students to traverse under an instructor’s attentive tutelage.

In sum, when people use logical inference to solve problems, they do so within
interactive cultural–historical contexts of inquiry that are populated with humans

2Although there has been a sustained interest among philosophers of science, cognitive scientists,
and science-pedagogy researchers in Peirce’s treatises on the logics of discovery (McKaughan, 2008;
Prawat, 1999; Thagard, 1981), recent decades have seen an application of this work to research on
mathematical learning as well. Often these publications present Peirce’s constructs of abductive rea-
soning and hypostatic abstraction as tentatively challenging Kantian constructivism (Norton, 2008,
2009; Rivera, 2008) or offering a response to the “learning paradox,” which traces back to Plato’s
Meno (Bakker, 2007; cf. Bakker & Hoffmann, 2005; Bereiter, 1985; Hoffmann, 2003).

3For a revealing discussion of historical relations between intuition and induction in the philosophy
of science, see Braude (2012).
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636 ABRAHAMSON

and artifacts. Moreover, when these contexts are patently framed as instructional
settings, an instructor likely presides and facilitates student inquiry. I now exam-
ine one such context—my probability design—to explore abductive reasoning in
guided reinvention.

An abduction-based framing of a design for probability. As a broad class
of content domains, PPIQ are particularly conducive for modeling mathemati-
cal learning via abduction. The polarization of tacit and professional perceptions
of PPIQ brings into relief educators’ efforts in support of students’ struggle to
triangulate these perceptions. As I now explain, the tacit–analytic polarization
also reveals the necessity of epistemic reorganization: For learners to achieve
coherence, they must reposition a taken-as-true perceptual gestalt as the result
of applying an emerging rule to a particular case.

Recall the general structure of perception-based designs for PPIQ. Each design
involves two focal objects: (a) a phenomenon under inquiry that affords “cor-
rect” perceptual judgment for a property in question and (b) an artifact that the
instructor frames as the conventional mathematical means of modeling the same
properties of the phenomenon. The guided learning process culminates in a “semi-
otic leap” by which the student figures out how to see the mathematical model as
cohering with the perceptual judgment. I now turn to my design for probabil-
ity as a context for interpreting this guided reinvention protocol as engendering
mediated abduction (see Table 1).

At first, students perform a naïve perceptual judgment to determine the most
likely event “2g2b” (the result). Yet, subsequently confronted with the event
space, wherein event classes vary by number of permutations (the case), they ini-
tially do not see it as obtaining on their earlier judgment. They resolve the conflict
by reasoning that the event space would be a viable model of the phenomenon on
the condition that “events with more permutations have greater likelihood” (the
rule). In so doing, students apply a domain-general heuristic (“More A—More B”;
Tirosh & Stavy, 1999). Thus, by resolving cognitive conflict, students are guided
to reinvent the classicist Law of Ratio.4

However, these three inferential roles—result, case, rule—are not preassigned
to their respective notions. Rather, I submit, these roles emerge as a syllogistic
triad only through pragmatics of interpersonal discursive interaction. Namely,
when the instructor positions the mathematical artifact as an apparent model

4The particular mathematical domain of classicist probability appears to be uniquely geared to the
study of abductive inferential reasoning, because structural properties of random generators are therein
viewed as a priori mechanical “causes” that are temporally antecedent to the predicted experimental
“effects.” Thus, when students are asked to make sense of the event space with respect to the ran-
dom generator, they may be drawing on domain-general cause–effect schemes inherent to classicist
probability and thus may tend to accept the analysis as explanatory of their own prediction.
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GUIDED MEDIATED ABDUCTION 637

TABLE 1
Coming to Understand a Mathematical Rule via Guided Mediated Abduction: Reinventing

the Law of Ratio

Inferential
Element Notion Elaboration

Result l2g2b > l3g1b When I see the apparently equal number of green
and blue marbles in the box and consider the
structure and operation of the marbles scooper,
I sense that a scoop with exactly two green
marbles is more likely than a scoop with
exactly three. [Perceptual judgment of source
phenomenon]

Case #2g2b > #3g1b When I look at the combinations tower, the
alleged mathematical model of the situation, I
note that there are more unique cards with
exactly two green squares as compared to cards
with exactly three. [Perceptual judgment of
model]

Heuristic More A—More B A known inequality between two objects along
some dimension implies a corresponding
unknown inequality along some other
dimension. [Intuitive domain-general heuristic]

Rulea #2g2b > #3g1b ⇒ l2g2b >

l3g1b

If it were true that a greater number of cards of
one type as compared to another implies a
greater likelihood of drawing that type of card
from the box, then my intuitive prediction
would be confirmed by the mathematical
model; the model itself would thus be validated
as a sensible means of analyzing the situation.
[Abductive inference]

Note. l = likelihood; g = green; b = blue; # = number.
aIn the interest of clarity, a specific numerical proposition is presented here rather than the general
rule.

of the phenomenon, the students are expected to reposition their earlier intu-
itive judgment, which they had tacitly accepted as an a priori fact, as a pending
proposition to be inferred from analysis. I view this epistemological relega-
tion of intuitive judgment from certain to suspect as implicating an essential
demand of constructivist design. In turn, I posit, investigating how instruc-
tors and students resolve this challenge hones dialectical research on guided
reinvention.

This section explained the mechanisms of abduction and hypothesized its
unique instantiation in educational settings. Using my design for probability as
illustrative context, I argued for the inherent situatedness of inferential reasoning
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638 ABRAHAMSON

by demonstrating its social construction in tutorial interaction. In particular, I
interpreted students’ acceptance of mathematical analysis as contingent on an
epistemological shift in the status of their intuitive judgment from what is known
to what needs to be proven. Namely, introducing mathematical machinery into
a domain of inquiry may prompt students to revisit and temporarily doubt their
own perceptual convictions for phenomena in question, such that the convictions
become volatile impressions warranting inferential support; the mathematical
machinery that spurs this doubting and repositioning of intuitive judgment in
turn takes on the role of supporting the judgment analytically. This abduction-
based interpretation of guided reinvention may hone critical-pedagogy inquiry
into vital issues of authority, identity, and trust pertaining to students’ inclina-
tion to consider an unfamiliar artifact as a useful model of subjective perceptual
experience.

With the discussion of mediated abduction, I conclude the theoretical section.
The next section presents a dialectical case analysis of mediated abductive infer-
ence drawn from my design-based research studies of mathematical cognition and
instruction.

CASE ANALYSIS

Li, an 11-year-old male Grade 6 student, was one of 28 Grade 4–6 students
who participated in a set of individually administered semistructured clinical
interviews (Abrahamson & Cendak, 2006). He had not experienced any for-
mal introduction to probability prior to the study. Though rated by his teachers
as a high achiever in mathematics, the essence of Li’s responses did not dif-
fer from those of his fellow participants, and yet his persistent argumentation is
particularly demonstrative of the cognitive conflicts and resolutions all students
appear to have experienced. The data analysis here focuses on Li’s wavering
interpretations of the two objects at the center of the activity—the source phe-
nomenon (the marbles urn) and its mathematical model (the event space)—with
respect to the anticipated distribution of experimental outcomes. I interpret the
tutorial interaction between the interviewer and the student as a process of
guided reinvention, because the interviewer facilitated an activity in which Li
experienced the subjective discovery of the classicist Law of Ratio, by which
chance is rethought as the quotient of favorable events and all events in the
event space. I approach Li’s inferential reasoning dialectically; that is, I expand
on traditional presentations of inferential reasoning as individual achievement
by highlighting the intrinsic roles of the designed objects as well as the inter-
viewer’s actions that frame the objects perceptually and position them socioepis-
temically. In particular, I view the episode as exemplifying guided mediated
abduction.
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GUIDED MEDIATED ABDUCTION 639

An Annotated Transcription of Li’s Episode

At the outset of the interview Li predicted 2g2b scoops as the most likely out-
comes, and he supported this prediction by citing the equal numbers of green
and blue marbles in the box. The interviewer then asked Li to enumerate all of
the different possible events, and Li listed five possible events—4b, 1g3b, 2g2b,
3g1b, and 4g. The interviewer handed Li the stack of empty cards as well as
blue and green crayons and asked him to show all possible events. Li created
only five cards, one for each event category, rather than all of the 16 possible
outcomes that included permutations on these event categories (see the bottom
row of the structure in Figure 1c). Moreover, once he had completed creating
these five cards, Li immediately declared that he was changing his mind about the
expected distribution, stating that there was a 1-in-5 chance of getting 2g2b (a flat
distribution).

I have attempted to explain Li’s abrupt change of mind by implicating the
unfamiliar procedures and media he was guided to engage—specifically combi-
natorial analysis and blank cards—as deforming Li’s tacit notion of frequency
distribution. That is, Li colored in five cards so as to indicate which outcomes he
anticipated in the hypothetical experiment. However, he did not yet know how to
use these cards so as to indicate how often he expected these outcomes to occur.
That is, he could use the cards to show only the five objects but not their expected
frequencies. Then, once he had constructed these five cards that did not inscribe
their respective felt frequencies, Li “read” the cards as implying a flat distribution
even though this interpretation contradicted his initial guess. Granted, the litera-
ture documents cases of students apparently harboring an a priori “equiprobability
bias” toward anticipated statistical distributions (Falk & Lann, 2008; LeCoutre,
1992). However, I do not know of literature documenting a change of mind from
a heteroprobable to equiprobable distribution (Abrahamson, 2009c). In any case,
I do not know of literature that explains such a bias or change as tacitly shaped
by the inherent forms of disciplinary media introduced into the learning envi-
ronment (cf. Bamberger & diSessa, 2003, on “ontological imperialism”). Thus,
the episode supports my view of learners’ subjective inference from tacit judg-
ment as epistemically volatile amid sociocultural reframing. Careful design and
facilitation are thus required if learners are to both sustain and coordinate these
dialectical resources.

The interviewer then asked Li to use additional blank cards from the stack so
as to create all of the possible permutations of the five events. Li consented to per-
form this assignment. Once he had completed the construction of the entire event
space and its assembly in the form of the combinations tower (see Figure 1c), Li
was asked to interpret the four cards bearing 1g3b (see column 1 in Figure 1c).
In response, Li stated explicitly that the three cards above the bottom card “don’t
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640 ABRAHAMSON

really matter,” explaining that the initial task was to determine the likelihood
of events, not to determine individual spatial configurations of these events that
ostensibly do not obtain on the question of likelihood. Li, similar to his fellow
participants, was thus reluctant to endorse order-based events as meaningful com-
ponents of the event space—he apparently found it peculiar that the property of
order in the random generator could possibly bear on its frequency distribution.
For Li to view the entire event space as a viable model of the scooping experi-
ment, he was to adjust his five-objects view to a five-sets-of-objects view. Indeed,
the interview subsequently transpired as a negotiation of these two views (see
below).

The interviewer asked Li yet again to state his expectation for the outcome
frequency distribution. The following conversation ensued, in which Li again
changed his mind at least twice (see the key statements that are underlined; the
3.5-min video clip can be viewed at http://tinyurl.com/Li-Dor-mov):

Li: /5 sec/ Well, actually . . . /3 sec/ yeah [one out of five]!

Dor: Ok.

Li: /2 sec/ Actually, /7 sec/ it kinda seems like it would be six out of sixteen.

Dor: Huh! Ok, so what . . . so . . . “One out of five” now went to “six out of
sixteen.” What . . . . how . . . //

Li: Well, it’s like . . .

Dor: //That’s quite a difference!

Li: Yeah. It . . . /10 sec/ Well, there are sixteen . . . /4 sec/ Well, actually
. . . /10 sec/ No, it’s still—I think it still would be one out of five.

In this interaction, Li first held firm to his view of the combinations tower
as comprising 5 cards that “really matter” (the bottom row) and another 11 cards
above them that were apparently irrelevant to predicting the experimental outcome
distribution. Then, after some pause, Li apparently viewed the entire collection of
16 cards in accord with the mathematical concept of an event space. Yet then he
returned to the 1-in-5 construal of the event space. In response, the interviewer
drew Li’s attention back to the marbles-scooping experiment in an attempt to cre-
ate for Li an opportunity to reexperience the intuitive expectation of randomly
scooping a plurality of 2g2b. To hone this conflict between the initial and later
assertions, the interviewer spelled out implications of Li’s 1-in-5 expectation for
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GUIDED MEDIATED ABDUCTION 641

the experiment, namely that outcomes would be flatly distributed across the five
possible events. Li reacted as follows:

Li: /5 sec/ Actually, no. I would . . . I’m going back to . . . there’s, out of all the
possibilities you could get, six out of sixteen are two-and-two [6/16 of the cards
are of type 2g2b], and these [indicates the 0g and the 4g cards] are only one out
of sixteen, so . . . Like, what I was saying—“one-out-of-five chance”—that would
mean . . . /6 sec/ ‘Cause, [vehemently] you’ll get these [hand sweeps up and down
the 2g2b column] more than these [holds up the single 4g card], ‘cause there’s six of
these and there’s only one of these. So that [the “one-out-of-five-chance” statement]
would mean that you would get about 20 percent of . . . Uhh, you would get 20 per-
cent of the four-greens and four-blues . . . But now I’m realizing that’s not true,
because . . . [indicates that the 2g2b column is taller than the other columns]

Li was led to re-notice that the middle column of the combinations tower (2g2b)
was taller than other columns. He inferred that the middle-column event was thus
more frequent than the other events, an inference that cohered with his perceptual
judgment of the situation.

The data excerpt demonstrates one student’s guided struggle to coordinate
holistic and analytic views. Li’s initial perceptual judgment for the phenomenon’s
property in question was mathematically valid, yet through attempting to model
the phenomenon formally he came to repudiate this evanescent notion in favor
of a mathematically incorrect inference. In particular, when Li looked at the phe-
nomenon, he did not attend to the order of the elemental events within samples,
and yet event spaces require analysis, generation, classification, and enumera-
tion of these elemental events. Operating naïvely, Li was thwarted in his attempt
to articulate his correct notion using the available media. Moreover, the misfit
between Li’s naïve view and the analytic construction materials resulted in Li
building a representation that, in turn, caused him to modify his own conclu-
sion regarding the phenomenal properties in question. In response, the interviewer
reoriented Li to the source phenomenon, and Li consequently rebooted his initial
perceptual judgment. Turning back to the mathematical model, Li succeeded in
seeing it as meaning his renewed intuitive judgment of the source phenomenon.
Thus, Li matched two views: an intuitive view of a quantitative property in a
source phenomenon and a professional view of its mathematical representation in
a disciplinary model.

Subsequent to this episode, the interviewer and Li continued to discuss the
likelihoods of various elemental and aggregate events represented in the event
space and then worked with computer-based simulations of the experiment and
discussed their relations to the marbles random generator and the event space.
Qualitative analysis of the interaction suggested that Li had learned to differentiate
stably between a view of the space as 16 equiprobable elemental events and as
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642 ABRAHAMSON

5 heteroprobable aggregate events, at least throughout the remaining duration of
the interview.

Epistemological Shifts in Guided Mediated Abduction

Li’s initial judgment (2g2b) did not engender any further inferential reasoning
because once the situation was framed by a property in question (likelihood),
he perceived this PPIQ as a holistic magnitude in his visual field. Subsequently,
though, the artifacts Li produced as he performed the construction task (the event
space) took on the epistemological role of new information that Li was prompted
to consider as an accepted cultural structure bearing on the initial judgment task.

When this tutorial interaction is viewed as a case of guided mediated abduc-
tion, certain epistemological issues that may be critical to reinvention are revealed
that were only implicit to the earlier microgenesis. Namely, the artifact Li built
was socioepistemically positioned by the interviewer as a case to be reckoned
with, and, as such, Li’s initial tacit judgment was devalued as a mere result still
warranting verification. This relegation in the epistemological status of Li’s ini-
tial judgment from something that is compelling to something that ought to be
explained was structured by the available artifacts and steered by the discursive
interaction. As Sfard (2007) wrote, “The mediating discursive routine drives a
wedge between the formerly undistinguishable acts of recognition and naming
and, as a result, the act of identification is now split into a series of autonomous
steps” (p. 603). In response, Li searched for a rule that, if applied to the case of
the entire event space, would imply his initial perceptual judgment. In sum, Li’s
abductive inference was mediated by the tutor’s discursive framing of the artifacts
both perceptually and socioepistemically. Abduction can be mediated.

CONCLUSION

In this paper I expanded on the work of C. S. Peirce to model how one student
reinvented a mathematical concept as a case of guided mediated abduction, that
is, as socially orchestrated creative logical inference. I conducted my investigation
within the empirical context of implementing a design for likelihood. Likelihood,
similar to slope, density, and velocity, is a PPIQ, and this conceptual class, I
reckon, bears unique affordances both for mathematics learning and for research
on this learning.

For learners, PPIQ evoke a holistic sensation of magnitude; then, through
appropriate instructional process, these presymbolic sensations ground the
quotient-based disciplinary metrics (e.g., the sensation of steepness is denoted
by rise/run slope). This semiotic emergence—coming to view formal models as
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GUIDED MEDIATED ABDUCTION 643

signifying holistic sensation—is not trivial and requires careful design and facili-
tation in the form of both material and discursive mediation. Namely, instruction
of PPIQ calls for: (a) the availability of both the source phenomenon and suitable
media for modeling the phenomenon as well as (b) a socioepistemic framing of
the mathematical model as explanatory of the holistic judgment.

To elaborate, my study sketched a heuristic design framework for mathemat-
ics teachers to foster conceptual change via guided mediated abduction, at least
for intensive quantities. I focused on a critical moment in learning in which the
student struggles to align two sources of information concerning a property of an
actual intensive quantity: (a) the naked-eye view of the source phenomenon and
(b) the disciplined-eye view of its mathematical model. To match these views, the
student in this case study determined a principle for interpreting the model as sig-
nifying the sensation, and this principle was precisely the pedagogically targeted
mathematical content of the instructional design. Namely, he was guided to deter-
mine the Law of Ratio to explain how an event space signifies likelihood. It thus
appears important that students have opportunities to judge the properties of PPIQ
before participating in the enactment of formal analysis procedures. These initial
sensations evoke the fundamental meaning of a mathematical notion. Learning
writ large is a quest for symbol grounding, a struggle to determine a principle by
which a proposed model signifies a sensation.

In terms of the abduction nomenclature, when students are asked to judge and
infer some target property of a situation, they initially construe this property as
a “case” bearing no further justification. Yet once they are guided to construct
an artifact that the teacher frames as a mathematical model of the situation, the
students experience a social need to support their judgment not with the situation
but with the model. Consequently, now the model becomes the “case” and students
seek a “rule” for seeing the model such that it implies their initial judgment of
the situated property as a “result.” In a sense, the progression respects students’
naked-eye perception yet dresses it up.

My tentative claim for the pedagogical power of guided mediated abduc-
tion comes with the caveat that the claim demands evaluation via experimental
designs that explicitly compare student learning under direct and abduction-
oriented instruction. I would recommend conducting such studies in the context
of intensive quantities.

The guided mediated abduction hypothesis has implications for mathemat-
ics teachers’ practice, in particular for how teachers might think about the goal
of deep understanding (at least with respect to the curricular content of PPIQ).
Guided mediated abduction is a form of instruction that attends closely to stu-
dents’ intuitive notions while at the same time structuring their sense making
of mathematical analyses. Teachers can play pivotal roles in making mathemat-
ics meaningful for their students by guiding the students both to draw on their
intuitions for situated phenomena and to rethink these sound intuitions in light of
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644 ABRAHAMSON

formal models. At its broadest, learning as guided mediated abduction implies that
educators should (a) create situations that enable students to form mathematically
correct judgments pertaining to a specified property of some targeted quantity,
even if these judgments are naïvely formed and only qualitative; (b) walk students
through analytic procedures that result in constructing the mathematical model for
the property in question; and (c) guide students back and forth between the phe-
nomenon and its model, highlighting aspects of the model that afford its heuristic
perception as signifying the initial judgment. As a result of participating in these
lessons, students should be able to accept the analysis process and rehearse it
meaningfully.

Guided mediated abduction offers an effective synthesis of traditional and
reform-based mathematics instruction. Namely, the approach respects teachers’
mandated charge to ensure student acculturation into mathematical practice while
respecting the children’s intellectual need and agency to make sense of these
artifacts of their mathematical heritage. I do not view this synthesis as a com-
promise engineered to appease vying camps in the policy debates. Rather, I view
guided mediated abduction as offering an empirically based, synthetic sociocogni-
tive conceptualization of reinvention that could inform design and administration
of institutionalized mathematics education.

Also, guided mediated abduction is certainly not instructors’ only alterna-
tive pedagogical framework for supporting student reinvention of mathematical
concepts. For example, D. L. Schwartz (1995), Asterhan and Schwarz (2009),
and White and Pea (2011) have all demonstrated cases of student dyads/groups
developing and abstracting knowledge structures via unguided collaboration and
reflection on instructional tasks. In my own recent work with embodied inter-
action technology I have documented cases of students bootstrapping principles
of proportional reasoning via appropriating available mathematical instruments to
better enact, explain, or evaluate their interaction strategies (Abrahamson, Trninic,
Gutiérrez, Huth, & Lee, 2011; Howison, Trninic, Reinholz, & Abrahamson,
2011).

Yet conceptual change via guided mediated abduction has theoretical impli-
cations, too. Specifically, from neo-Piagetian perspectives, it may appear pecu-
liar that students accept analyses of phenomenal properties through making
heuristic semiotic leaps rather than by building conceptual schemes piecemeal
(cf. Abrahamson & Cigan, 2003; Kalchman, Moss, & Case, 2000; Lamon, 2007).
I thus join Norton (2009) in viewing Peircean analysis of mathematics learn-
ing as posing questions for constructivists. At the same time, I recognize that
sociocultural theorists still need to account for students’ perceptual primitives
and inferential reasoning mechanisms that are at play in the development of
disciplinary skills. Ultimately, though, I view these mutual challenges across
the cognitive–sociocultural divide as honing the work of educational theorists
engaged in constructing dialectical perspectives on learning.
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GUIDED MEDIATED ABDUCTION 645

In their dialectical investigations, educational theorists whose empirical work
consists of studying mathematical learning could avail themselves of frame-
works for designing instructional materials that leverage the unique method-
ological affordances of PPIQ (see Abrahamson, 2009a; Abrahamson et al.,
2011; Abrahamson & Wilensky, 2007). Instructional designs emanating from
these studies could then be tested and incorporated into mainstream curricula.
As researchers develop these frameworks, a constant concern involves the ques-
tion of students’ general dispositions toward the mathematical analyses they are
required to adopt. On the one hand, “[students] have no other option than to
engage in the leading discourse even before having a clear sense of its inner logic
and of its advantages” (Sfard, 2007, p. 607). Yet on the other hand, engaging in
this leading discourse demands of both teachers and students the trust and courage
to see the world as others do (Abrahamson, Gutiérrez, & Baddorf, in press).
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