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This article [1] is a case study of technology-facilitated argu-
mentation. Several graduate students, the first four authors,
present and negotiate complementary interpretations of a
diagram generated in a computer-simulated stochastic
experiment. Individuals use informal visual metaphors, pro-
gramming, and formal mathematical analysis to ground the
diagram, i.e., to achieve a sense of proof, connection, and
understanding. The NetLogo modeling-and-simulation envi-
ronment [2] serves to structure our grounding, appropriating,
and presenting of a complex mathematical construct. We
demonstrate individuals’ implicitly diverse explanatory
mechanisms for a shared experience. We show that this epis-
temological diversity, sometimes thought to undermine
learning experiences, can, given appropriate learning envi-
ronments and technological fluency, foster deeper under-
standing of mathematics and science.

Computers can be powerful tools for learning mathemat-
ical concepts. One powerful way to use computers for
learning mathematics is through the exploration and con-
struction of computer-based mathematical models and
simulations (Feurzeig and Roberts, 1999; Jacobson and
Kozma, 2000; Wilensky, 1997). However, users’ learning
experiences through computer-based modeling, we believe,
can be greatly amplified beyond running and observing sim-
ulations – learners can engage in modes of discourse that
challenge the veracity of and assumptions underlying these
models and act on these challenges.

In order to take greater advantage of the computer
medium, we contend, learners should engage in technol-
ogy-supported argumentation, including questioning the
assumptions of existing models and authoring their own
simulations. This contention, inspired by Papert’s construc-
tionism (1991), is developed in this paper through a
descriptive and collaborative introspection into a rich and
authentic learning experience we shared through critiquing
each other’s computer-based design work. We attempt to
demonstrate the thought processes motivating individuals
engaged in creating (programming) mathematics models. [3]
In the context of model design, we construe programming
not as an end in itself but rather as a natural rhetorical mode

of expression that harnesses the computer – the “protean
machine,” as Papert (1980) calls it – in extending, elaborat-
ing, and grounding mental simulation into the public space,
a mode that is available to computer-fluent individuals and
could be made available to all learners.

Our approach builds upon the literature that advocates
that students construct mathematical understandings through
engaging in activities within “mathematical environments”
(Noss and Hoyles, 1996; Papert, 1991; Piaget, 1952). Com-
puter simulations afford opportunities for such context-
ualized activity (Feurzeig and Roberts, 1999; Jacobson and
Kozma, 2000; Wilensky, 1993, 2001) in collaborative learn-
ing environments, where students can ‘connect’ their
qualitative intuitions to formal quantitative articulation such
as graphs and formulae.

Collaborative learning differs from exclusively individual
learning in that collaboration constitutes a catalyst for argu-
mentative rhetoric, through which individuals articulate
hitherto implicit interpretive models (Cobb and Bauersfeld,
1995; Edelson, Pea and Gomez, 1996; Guzdial, Hmelo, Hub-
scher, Nagel, Newstetter,  Puntambekar, Shabo, Turns and
Kolodner, 1997; Stahl, 2000). Also, there is great heuristic-
didactic value in shifting between different interpretive
models for making sense of observed phenomena and
between isomorphic mathematical representations such as
diagrams, graphs, and equations (Post, Cramer, Behr, Lesh
and Harel, 1993). A collaborative phenomenological-mathe-
matical negotiation affords opportunities for formulating and
bartering interpretive models (Cobb and Bauersfeld, 1995).

We take the narrative form of first presenting four differ-
ent interpretations of a simulated probabilistic phenomenon
authored in the NetLogo modeling and simulation language
[2] as part of design research carried out at the Center for
Connected Learning and Computer-Based Modeling (CCL)
at Northwestern University, US. Individual contributors,
graduate students in Wilensky’s research group in the Learn-
ing Sciences and Computer Science departments, explain the
experiential grounds for their respective personal interpreta-
tions. These personal introspective explanations begin from
idiosyncratic constructions of the probabilistic situation,
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including cogent associations from prior knowledge that
these individuals bring to bear in their sense making.
Through social interaction revolving around the probabilis-
tic simulation, these individual interpretations feed off each
other, converge using shared representations of the mathe-
matical problem, and are woven into an inter-subjective
co-constructed account of the phenomenon. Thus, the nar-
rative form of this article is useful, because it conveys an
authentic collaborative learning process, giving content to
and mirroring the argument we develop. The narrative cul-
minates in a conversation through which we came to see
the correctness, the value, and the problematics of each
other’s points of view. [4]

In the discussion, we collectively reflect on our collabora-
tive learning to argue for the centrality of computer
simulation as a vehicle of proof. At the same time, by expos-
ing the disparity between our mathematical assumptions
relating to a single representation, we critique the epistemo-
logical basis of the ostensible agreement we had achieved. 

The mathematical object
Imagine the following computer simulation (see Figure 1).
Three “boxes” are set in fixed positions in a row. At the press
of a button, another set of three boxes randomly paint them-
selves either ‘green’ or ‘blue.’ Thus, the result of the
compound event is, either, green-green-green, green-green-
blue, green-blue-green, …, with a total of 8 different
permutations. Now, further imagine that a user creates a
“secret key,” say ‘blue-green-blue,’ and then the computer
searches for this key. The computer’s “unintelligent” search
algorithm is to simultaneously paint each of its boxes either
green or blue, randomly, and hope for the best. An event, the
computer’s single guess, can be either a “failure” (key was
not matched) or “success” (key was matched). If events are
recorded as a list of failures and successes, with each succes-
sive event added on at the end of the list, they form a string
of length n, where n is the total number of events (failures +
successes), e.g., ffsffffsfsfssffsffffffsfsffsssfsffsfsffs. [5]  

These flashing colored boxes are an example of a sto-
chastic experiment, the study of a succession of random

events produced by some mechanism, whether concrete or
virtual, for the sake of understanding probabilistic aspects of
the mechanism. In stochastic experiments, we expect that,
if we produce sufficient data, the outcome parameters will
reflect some general probabilistic trait of the mechanism
(i.e., the Law of Large Numbers, where outcome distribu-
tions converge on the probabilities inherent in the
mechanism). Computers are useful in rapidly generating
data. The computer generates random numbers and these
may be instantiated through code as interface objects – e.g.,
the colors of the boxes – that give sense to the experiment.

The colored boxes experiment could have been instanti-
ated by flipping three coins instead of coloring three boxes
each with one of two colors. Whether showing boxes or flip-
ping coins, the computer-screen interface between the user
and the code affords a dynamic perceptual experience that
is richer than pressing a button and immediately receiving an
output string of events or just a single processed value. Also,
the parameters by which experimental data are processed
may vary, and, in fact, once data are collected, different
experiments may dictate different analyses of the same set of
outcomes, that is, different ways of parsing and quantifying
the string of failures and successes. For instance, the boxes
experiment may be run in order to evaluate the frequency
of successes (see Figure 2a), but you might look at the same
set of data and wonder about the average number of trials
from one success to the next (see Figure 2b). Each analysis
can be represented in a different type of graph. As it was,
we discussed a graph representing the outcome distribution
for number of attempts until success. 

These distinctions between the mathematical constructs
and the metaphorical objects and between different models
of the same mathematical data as well as issues of how rep-
resentations inform interpretations of data all usually remain
opaque, because learners have no reason to probe their
implicit understandings. We had operated under the implicit
assumption that once a mathematical construct is instanti-
ated in both a metaphor and a graph that represents the
accumulating outcomes of the probabilistic experiment,
there would not be much room for individual interpretation
– ostensibly, the constructivist ultrasound would not reveal
interpersonal differences. But we were wrong. We begin by
describing the interaction that instigated the debate, and then
we outline what it took for each student to connect to – to
really understand – the stochastic experiment. The Rashomon
structure of the texts enables a conveying of authentic learn-
ing experiences of individuals within a collaborative
learning space. [6]

Narratives
During a design-team meeting, Dor demonstrated how a com-
puter-simulated stochastic experiment he had authored [7]
resulted in a bell-shaped histogram. Dor’s approach to reveal-
ing the probabilistic traits of the model had been to use
sampling. That is, Dor’s model parsed the string of individual
outcomes into substrings of fixed length, counted up the suc-
cesses in each of these substrings, and displayed the
successes-per-sample as a histogram, which – as it happened
– recurrently grew into a bell-shaped curve. The sample size
in this experiment was 100 attempts. 

Figure 1: The mathematical object (fragment from a Net-
Logo model). The user has set the “secret key”

‘blue-green-blue,’ and the program will try to guess this key.
Monitors and graphs will keep track of hits and misses.
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Ben, Josh, and Matthew all expressed curiosity during
the meeting as to whether or not collecting large samples is
necessary for demonstrating the probabilities inherent to
the model. In particular, they questioned why one could not
simply collect samples of unit-size one (i.e., individual
guesses) and count the number of single-guess samples until
each successive success. Ben and Matthew were convinced
that ‘successes-per-sample’ would usually mirror ‘samples-
per-success.’ Perhaps the implicit assumption here was that
since the search algorithm itself would not be changed and
since the variables are held constant – same number of
boxes, colors, and total number of attempts – the graphic
representation, too, should remain unchanged. Matthew and
Ben expected these reciprocal ratios (samples/success →
successes/sample) to correspond with simple symmetry
transformations of the corresponding distribution curves.
Dor explained that he had tried using this attempts-per-suc-
cess technique and had been frustrated with its results; that
the graph produced resembled a ski-slope that had its peak at
‘successes on the first guess’ and then decreased exponen-
tially as the number of guesses increased. 

Josh, Matthew, and Ben all argued that their method was
identical to Dor’s sampling technique except that their
method curtailed each search at the first success to create
variably sized samples that contained single successes. [8]
That is, instead of taking many samples of fixed size and
counting up the varied number of successes in each sample,
they suggested counting up a fixed number of successes – 1

– within necessarily variably-sized ‘samples.’A graphic rep-
resentation of the distributed frequency of such sample sizes,
they argued, should therefore be identical to the bell-shaped
distribution that Dor’s technique discovered. Uri recom-
mended that they think about “independence.” About this
time, the meeting ended.

Dor’s world

It’s not that Dor didn’t understand the graph. He was perfectly
happy to believe that the code he had authored himself indeed
results in that ski-slope graph: “This is what you get when
you run this stochastic experiment.” But then his peers, who
were witnessing the graph for the first time, challenged it,
saying it should be bell-shaped and not shaped like a ski-
slope. Perhaps if they saw the graph in a textbook they would
not have been so critical, but they were all sufficiently versed
in programming to appreciate that Dor may have erred in
attempting to formulate computer procedures that emulate the
experiment. Spurred by their challenge, Dor had to defend
and warrant the graph as a valid representation of his experi-
ment, so he searched for a means to connect to the graph.

Dor typically grounds mathematical constructs in real-
world objects and situations (Abrahamson and Wilensky,
2003). So, he struggled to find a situated model that would
explain the logic of the ‘1/x-type’ curve of the attempts-per-
success frequency distribution, and specifically its
non-normal shape. [9] Dor came up with the “sticks” model,
as follows: imagine that each per-success string of outcomes
is a stick of 3, 5, 2, .... units of length, making up a concate-
nation of sticks with the total length of 40 units:
ffs-ffffs-fs-fs-s-ffs-ffffffs-fs-ffs-s-s-fs-ffs-fs-ffs (the same
string of data from the mathematical object section, above).

Now, the stochastic model that had generated strings of
outcomes occurring over time was translated into segments
of substantive material extending in space – sticks. From the
perspective of the sticks model, the question of the 1/x-type
curve becomes, “Why is it that if we collect sticks of total
length N (here, 40) we typically get a greater number of
shorter sticks as compared to longer sticks?” If we were
looking at this string of f’s and s’s as one of many different
possible outcomes of an event of length 40 total attempts, we
could ask, “How many different arrangements of sticks of
lengths 1 unit through 40 units are there that sum up to 40
units?” Answering this question mathematically could deter-
mine whether or not most collections of addends of 40 do
indeed contain more 1-sticks (sticks of length one unit) than
2-sticks (sticks of length two units), more 2-sticks than 3-
sticks, more 3-sticks than 4-sticks, and so on. That would
explain why there are 1/x-type curves and not bell-shaped
curves on numerous runs of the “green/blue boxes” model.
Stripping this down to bare numbers, we are asking the fol-
lowing: “Given an inexorable pool of numbers 1 through 40,
how many different arrangements can we form under the
condition that each sums up to 40?”

The first observation is that there is just a single arrange-
ment for a single stick of length 40: {40}, a single stick of
length 40 units. There are 2 arrangements for a stick of length
39 units: {39 + 1} and {1 + 39}. For a stick of length 38 there
are 5 arrangements: {38, 2}, {2, 38}, {38, 1, 1}, {1, 38, 1},

Figure 2: Two graphs of the same data-set of outcomes in a
probability experiment: some of us expected the
attempts-until-success graph to be bell-shaped, too,
and this expectation provoked the modeling and
argumentation reported in this article.

(a) A ‘ski slope’graph representing the frequency distribution for the
number of attempts until success (number of trials until you match the
key successfully)

(b) A bell-shaped graph representing the number of successes per
sample (number of correct matches per fixed-sized sample).
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and {1, 1, 38}. And so on. Thus, the shorter the stick, the
more different arrangements it may fit into. So, in a random
bounded string of total length 40, the shorter the stick, the
higher its chance of being included. This explains why the
graph descends from 1 through 40. Much later, Dor learned
that he had ‘discovered’ partition-function distributions. [10]

Dor created a NetLogo model to simulate his stick gath-
ering so as to have empirical evidence to support the
viability of his stick interpretive model of the graph (see Fig-
ure 3). He designed the simulation so that it would plot as a
histogram the frequencies of each stick over 10,000 runs of
the model, in each of which the model randomly selected
numbers, adding them up to a specified total (40 in the cur-
rent example). When we run this model over and over, we
receive different specific numbers in the list, but the gen-
eral frequency distribution, expressed in the histogram
shape, remains constant. To all appearances, this is precisely
the shape we receive when plotting the attempts-per-suc-
cess data from a single extended run of the “green/blue
boxes,” so Dor felt that he now truly understood the graph.

Ben’s world

In preparing for the original meeting, Dor had consulted
with Ben, who wrote an analysis of the computational com-
plexity of the problem, which Dor then implemented, in the
form of a NetLogo model (see Figure 4), in his presentation
to the research group.

The model examines how the problem’s sample space
grows with the number of boxes and colors. In performing
this analysis, Ben discussed the expected performance of
several guessing strategies that one (or one’s computer)
could use to find a secret key. His analysis relied upon long
run averages over large numbers of keys or upon non-ran-
dom guessing patterns that made guesses non-independent
(whereas Dor’s scheme’s random guessing made each
guess’s probability of success independent). This work
allowed Ben to have a set of strong beliefs about the proper-
ties of the model, which were then tested and refined over the
course of discussions about the model. However, neither Ben
nor anyone else in the group immediately realized that Ben
used a strategy wherein guesses were non-independent,
whereas Dor’s model treated guesses as independent.

Matthew’s world

Matthew concurred with Ben’s analysis of the problem
space and embraced this analysis in his own attempt to
rethink the search algorithm. While a brute-force key search
mapped well onto the problem, a proof of the curved distri-
bution seemed remote. Matthew decided that it is possible to
guess randomly in the search space to find a “success,” but
without any history or pattern to these guesses, the searcher
is doomed to repeat “failure” guesses randomly and indefi-
nitely. How could you make an informed guess about the
running time of the search through the key-space if it was
exponential and memory-less? It would take a very long
time to find successes in any large search space. 

Ben and Matthew together

Ben and Matthew initially thought that the until-success
approach would produce a bell-shaped curve (see Figure
2b). That is, they expected a run of attempts-until-success
of length ‘mean – 1’ to be equally likely as a run of length
‘mean + 1.’ This sense of balance can seem correct at first,
when you reason according to the following logic that con-
veys a sense of ‘equivalence’: If you are randomly guessing
a number between 1 through x, you are no more likely to
guess any of these numbers – they are all equally likely, with
a probability of 1/x. However, the surprising fact is that this
line of reasoning does not imply that repeated attempts-
until-success will result in an even or a symmetric
distribution of guesses. Much of the confusion, we later real-
ized, was embedded in the classic difference between
independent and conditional probability – a difference we
had all studied yet were not attuned to apply. 

Ben and Matthew, dissatisfied with the lack of resolution
at the end of the meeting, began writing a NetLogo model
that implemented their attempts-until-success algorithm. The
NetLogo model ran according to the following simple algo-
rithm: pick a random number, increment a counter by 1, and
if the number is a match, save the counter to a list and reset
that counter to 0. They used these data to plot a histogram of
the list of samples-until-success counters. Surprisingly, when
this code was run, it showed up as the precise graph that Dor
had drawn on the whiteboard during the research meeting: a
1/x-type graph. Ben and Matthew checked the algorithm and
the code several times and then formulated preliminary the-
ories to explain the graph. That is, once they were satisfied
that they had debugged the code, they reluctantly turned to

Figure 3: Dor’s stick model implemented in NetLogo. Note
its similarity to Figure 2a. 

Figure 4: Ben and Dor’s representations of search-algorithm
expectancies, set to 3 boxes (P) and 2 colors (C).
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debug their own thinking – the computer model they had
themselves created now constituted an epistemic authority
that forced them to reconsider their prior assumptions. They
had no clear idea why the graph worked as it did, but now
they had some theories. They had ownership of it as a prob-
lem instead of as a mistake. 

Josh’s world

Josh was baffled by Dor’s rationale for plotting successes-
per-sample. The bell shape of the graph (see Figure 2a) felt
correct, but Josh thought it was perhaps unnecessary to resort
to sampling in order to get this shape. Specifically, Dor’s
bell-shaped fixed-sample distribution suggested to Josh that
he could represent the attempts-per-success frequencies, too,
in terms of a bell-shaped distribution. “Sure,” he thought,
“it’s possible to get to the solution of the key color-combi-
nation quicker than the mean number of attempts-per-success,
but for every time one finds the solution slightly quicker,
there’ll be a different time when it takes longer – it sort of
balances out – just like the normal curve.” 

Josh proceeded to analyze the probability of a run
(attempts until success) that lands in each column of the fre-
quency-distribution graph. That is, Josh attempted to
reconstruct the building blocks of the histogram by step-
ping along column-by-column from the y-axis towards the
right and accounting mathematically for each step. On each
trial (attempt), there would be a 1-in-8 chance of success.
That part Josh knew to be true. So, 1 out of every 8 runs
should end up in the column representing 1 trial until suc-
cess, and the rest of the runs – 7 out of every 8 runs – will
end up somewhere to the right of that column (see Figure 5).
Then, given that a run failed on the first trial, it once again
has a 1-in-8 chance of success in the second trial, so 7/8 ×
1/8 of the total runs will end up with 2 trials until success.
This is certainly less than in the first column. Similarly, fail-
ure on the second trial would push the run into the next
column to the right. This process continues so that, for
example, 3 trials until success will happen 7/8 × 7/8 × 1/8
of the time, or (7/8)2 × 1/8. This implies that the 3rd column
should have less than the 2nd column. Josh was convinced
this process would continue and that therefore, by induction,
the ski-slope was correct after all.

Denouement

When Ben and Matthew came into a subsequent meeting,
they were excited. They had coded up a NetLogo model to
implement the thought process that they, as well as Josh, had
had during the earlier meeting and had found Dor’s assertion,
that plotting trials until success results in a ski-slope graph, to
be true. Josh quickly sketched for them his thought process
on the problem, and they confirmed that they were then
thinking about “something like that.” Matthew, Ben, and Josh
all, still, expressed dissatisfaction with Dor’s stick analogy.

A premise of the stick model is that the probability of a
single string of length 1, 2, 3, or more occurring is equal. In
other words, translating this framework back to the original
problem, after each success it is equally likely that a subse-
quent string (attempts until success) will run 5 attempts until
a success as it will run 2 attempts until a success. However,

armed with their new understanding of the outcome distribu-
tion, where 5 attempts until success has a smaller chance of
occurring compared to 2 attempts-until-success, Dor’s sticks
did not make sense to Matthew, Ben, and Josh. Dor translated
this critique in terms of the stick model and realized that he had
conflated method and substance – though he had employed a
probabilistic solution procedure (Monte Carlo brute force), the
situational context of the sticks problem is essentially not prob-
abilistic. Also, Dor had confused the phenomenon with
superficial properties of its statistical analysis: you cannot take
an outcome distribution and make it into its own sample space.
Sometimes a stick is just a stick. [11] 

Discussion
Mathematics can be a difficult domain for learners. More so,
when the subject matter does not fit well with intuitive
knowledge, as is often the case with probability (Kahne-
man and Tversky, 1982; Konold, 1989; Wilensky, 1993,
1995, 1997). Conversely, intuitive knowledge may afford a
powerful personal resource for concretizing abstract ideas
(Wilensky, 1991) and thus assimilating and appropriating
these ideas (Papert, 1980). This tension between, on the one
hand, the unintuitiveness of some mathematical ideas and,
on the other hand, the value of intuiting mathematics is a
polemical, pedagogical, and design challenge that invariably
entails tradeoffs. We believe in a mathematics education that
goes deeper than merely building isomorphism between
equations and other formal representations – the mapping
must also be anchored in intuition, that is, assimilated to
each individual’s collection of models. Connecting to ideas
that are counter-intuitive is challenging because you must
build mental models that are loyal to both the mathematical
constructs and your intuition. That is, you must forge a mid-
dle ground that reconciles immutable equations and your
fickle sense of proof.

As individuals, we had each succumbed to over-lenience
in evaluating the validity of our own proofs. We could be
so indulgent because, for each of us, the “proof” was not rig-
orously mathematical, but lay in our personal sense of
conviction in the viability of our own models for explain-
ing how the sloped graph came to be. Until the group

Figure 5: A geometrical progression emerges through con-
sidering the chances of achieving a success over
exactly 1, 2, 3, and more attempts.
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critiqued our individual convictions, we were complacently
entertaining different models for the same graph, because
the function of these models was personal and not external-
ized. Moreover, our personal criteria for accepting or
rejecting the ski-slope graph were anywhere between vague
and unarticulated.

Finally, to varying degrees, we were satisfied to accept the
results of a computer simulation. So, only through exposing,
sharing, and debating these implicit models could we begin
– as individuals and as a group – to critique our underlying
assumptions and models. It is perhaps coincidental that as a
group we employ a diverse range of explanatory mecha-
nisms for grounding our mathematical understanding –
real-world phenomena, programming, and mathematical
models – yet this epistemic wealth would have remained
untapped and unshared if it were not for our learning envi-
ronment that fostered argumentation. 

Dor’s model was essentially mathematically correct, yet
proved non-isomorphic to the problem at hand, because it
modeled a mathematically different phenomenon. Ben and
Matthew’s models were correct and pertinent to the problem
but unintuitive to Dor and Josh. Josh needed mathematical
proof to understand a mathematical object. And yet, for each
of us, the use of idiosyncratic models as mathematical objects
scaffolded learning by providing an epistemic form (Collins
and Ferguson, 1993) that served in a dialogue both between
human and mathematics and between human and human.

All of us held radically different conceptions of what suf-
ficient proof would consist of in this situation (see Figure 6).
Dor, coming from a cognitive-psychology background and
working primarily in mathematics-education design, was
looking for intuitive ways to transform the temporal con-
stituents of the problem (successive stochastic occurrences)
into spatial and tangible constituents (the sticks), towards
creating a tractable proof-explanation couched in terms of
visible objects in the world. Ben and Matthew were looking
for assurance that the simulation reflected their set of algo-
rithmic specifications. For Ben and Matthew, it was
sufficient for a model produced according to their own spec-
ifications to behave identically to a model produced to other
specifications to believe that the semantics of the models
were identical. Josh, being a mathematician, was looking for
a formal mathematical proof.

If we were each living and working within a social void,
perhaps our individual interpretive models would have suf-
ficed, as inaccurate and/or incomplete as they were. We are all

relatively well versed in all of the proof techniques used by our
peers, yet we each chose to internalize the problem differently.
Internalized proof, though, once arraigned and ferreted out to
the public domain, must stand the test of peers’ rigorous cri-
tique. Thus, the pragmatic demand of collaboration in our
research team teased the tacit models out of each of us and
pitted them against each other until we had reached, as a group,
a confluence of our different approaches. This confluence,
once internalized, afforded us both greater confidence in the
specific content we had discussed and conceptual tools that
may inform our future modeling of simulated phenomena –
each according to his steadfast style. 

This narrative could be viewed as a distributed-cognition
project. None of us held a complete understanding of the prob-
lem independently of each other, our proofs, our models, and
the technology that enabled our discourse. The computer-
based modeling played a central role in creating this distributed
cognition, as it made manifest our respective intuitions without
explicitly making the interpretations themselves manifest. By
using a concrete, computer-created mathematical model, we
could each look at a stable object, interpret it, and inspect our
interpretation with the group. In other words, the models
served us as a platform to tap and share our previous experi-
ences and ideas. Curiously, the positioning of mathematical
knowledge as a perceivable taken-as-shared object was both
what sparked the initial conflict and the platform for bartering
and negotiating over our phenomenology.

Conclusion
Seeing is believing, but believing is an inadequate episte-
mology of mathematics. There lies a conceptual abyss
between being able to run a computer simulation and being
able to critique it. This conceptual abyss remains covert
when we take mathematical constructs for granted, such as
in blindly accepting a computer-generated graph as true. At
the same time, making this conceptual abyss explicit, to one-
self and to peers affords powerful learning experiences.

We have discussed a case in which several students were
fortunate to discover the over-simplifications of their indi-
vidual understandings of a simulated stochastics experiment.
Initially, each student harbored a different conception of the
model. These individual conceptions were unarticulated and
each constituted a limited and incomplete story of the com-
puter simulation. A breakdown occurred through dialogue
that challenged the exclusiveness of each conception and
forced the individuals to ground their implicit understanding
in mathematical-technological artifacts they each authored –
artifacts that exposed each personal construction to interper-
sonal scrutiny, which was motivated by concern over
personal stakes. The diversity in explanatory mechanisms
and cognitive styles that the group enlisted in analyzing the
validity of a shared image created not a fragmented but a
robust collective understanding of the mathematical phe-
nomenon underlying the image.

Ultimately, each individual sustained their personal intel-
lectual style, yet we believe that it is such negotiation
between competing-cum-complementary styles, a negotia-
tion instantiated in vivid constructions, that engenders
individual concretizing of abstract ideas (Noss, Healy and
Hoyles, 1997; Papert, 1980; Wilensky, 1991). Whereas we
espouse learning environments that respect and foster epis-

44

Figure 6: Tradeoffs in the authors’mathematical reasoning.

Author Strategy Benefits Challenges

All Formal visual
metaphors
(e.g., histograms)

Shared represent-
ation of process
product

Product over process:
shared understanding of
phenomenon may mask
misunderstanding of
underlying process

Dor Informal visual
metaphors

Grounds mathe-
matical object

Not necessarily
isomorphic to problem;
potentially imprecise

Ben and
Matthew

Computer model
authoring

Precision; acces-
sible construction

Some programming
skills necessary

Josh Mathematical
proof

Precision Expert construction
necessary
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temological pluralism (Turkle and Papert, 1991), we con-
jecture that such pluralism that lacks interpersonal critiquing
of individual ‘makes-sense’ feelings may miss on a poten-
tially powerful learning mechanism and even hide personal
modeling processes that are mathematically incorrect. That
is, we believe in the educational power of distinguishing
between the psychology and epistemology of mathematics
(Piaget, 1952; Papert, 2000).

We hope to have demonstrated both affordances and con-
straints of computer simulation of mathematical phenomena,
and specifically the dangers of learning in a computer envi-
ronment in which models remain at a taken-for-granted
iconic level. Moreover, we advocate leveraging conceptual
diversity through computer-facilitated argumentation that: 

• motivates individuals to effortful mathematical
inquiry

• pools together many and varied intellectual
resources

• provides opportunities for individuals to build flu-
ency in the domain through argumentation, to use
expert vocabulary, and to attempt to negotiate the
different explanations

• fosters individual construction of a mature episte-
mology of science and mathematics that distin-
guishes between phenomena, models, and forms
and content of representation, and

• engenders useful and respectful group discourse
between individuals who appreciate the potential
strength in diversity.

We conclude that whereas computer simulations can
potentially facilitate instructional argumentation, the mathe-
matics-education community should be wary of false
agreement between interlocutors that may arise through such
ostensible sharing of a representation that does not expose
epistemological-mathematical disagreement inherent in the
interlocutors’ underlying assumptions. A computer simula-
tion is a powerful platform facilitating discourse, but it is
only through exposing conflicting assumptions that students
can fully avail themselves of the opportunities and promises
of collaborative computer-supported learning environments.

Notes
[1] Based on a paper presented at The International Conference of the
Learning Sciences , 2004, Santa Monica, CA.
[2] Uri Wilensky’s software NetLogo (1999) can be downloaded from
http://ccl.northwestern.edu/netlogo, accessed August 31, 2006. 
[3] The term programming may connote a certain subclass of so-called
“old-style” programming languages and authoring environments not
designed for learning or ease of use. Recently, there have been positive
developments in authoring environments designed specifically for novices
(diSessa, 2000; Hancock [12]; Noss and Hoyles, 1996; Repenning, Ioan-
nidou and Zola, 2000; [2]).
[4] In the narrative form, we employ the terms “we” and “us” sometimes
to mean the four graduate student “conversers” and sometimes to mean
the five authors. The context disambiguates the referents.
[5] The number of successes has been inflated here relative to the above
problem due to the constraints of this textual presentation of a computer
simulation. There should be a 1:8 success rate.
[6] Note that the mathematical problem in and of itself is not difficult. We
certainly make no claims for having made any original mathematical dis-
coveries. Yet, our learning experiences through the problem, we find, do
shed light on students’ challenges, in general, in studying mathematics.
[7] Dor Abrahamson and Uri Wilensky’s software ProbLab (2002) can be
downloaded from http:// ccl.northwestern.edu/curriculum/ProbLab/.

[8] It appears that the construct of ‘sample’ can be misleading, perhaps
due to prior, not necessarily mathematical, associations, e.g., must its size
be fixed? Need there be more than one sample?.
[9] As it turned out, the term “1/x-type curve” was not mathematically accu-
rate. However, this is a signifier we used to gain a common foothold in
arguing our interpretations of the graph on the computer screen.
[10] The general formula that counts the number of distinct partitions of n is: 

P(n) ~ (exp [π × sqrt (2n/3)])/4n × sqrt 3. (Weisstein, 2003)
Note that this formula does not account for the number of different distinct
permutations of each of these partitions.
[11] Ironically, Dor’s sticks model converges to a 1/n function.
[12] Hancock, C. (2003) Real-time programming and the big ideas of com-
putational literacy, unpublished doctoral dissertation, MIT, available from
http://llk.media.mit.edu/papers/ch-phd.pdf, accessed August 31, 2006.
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sculturally. My hunch is that when ethnomathematicians and
indigenous knowledge apologists speak of culturally spe-
cific knowledge or of truth being relative, they are actually
referring either to practices or to beliefs.

An evaluation of the research around and application of
so-called ‘alternative’ mathematics is necessarily and cor-
rectly conducted against the background of ‘formal,
academic’ mathematics. Having said this, I do not share
Rowlands and Carson’s view that

[the] conversation [between critics and defenders of
ethnomathematics, [… i]n addition to purely mathe-
matical issues, […] involves questions of historical
injury and contemporary relationships between cultural
groups whose values are incommensurable. (2004, p.
329; emphasis added)

In fact, I would suggest that it is precisely the pernicious cul-
tural and ethical relativism invoked here that would make
‘conversation’ impossible. On the contrary, I wish to argue –
and my recent ICEm-3 experience strongly bears this out –
that the degree of convergence between values and priorities
is striking and that, despite some historical and cultural
divergence in approaches, there is a common commitment to
discussion and argument, as well as to standards of reason-
ing about matters that concern us most. [2]

Notes
[1] Taken from Ubiratan D’Ambrosio’s (2006) powerpoint presentation
‘Ethnomathematics: the scenario 30 years after’, plenary presentation,
Third International Conference on Ethnomathematics (ICEm-3): Cultural
Connections and Mathematical Manipulations, Auckland, New Zealand. 
[2] On this note, I wish to thank Bill Barton and his team for making ICEm-
3 the intellectual and human success it was. My heartfelt thanks go to all the
delegates with whom I had personal conversations, especially Gelsa Kni-
jnik, Ubiratan d’Ambrosio, Willy Alangui, Bill Barton, Ivan Reilly and to
my dear friend and colleague Marc Schäfer.
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