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Abstract The mathematics subject matter of probability

is notoriously challenging, and in particular the content of

random compound events. When students analyze experi-

ments, they often omit to discern variations as distinct

events, e.g., HT and TH in the case of flipping a pair of

coins, and thus infer erroneous predictions. Educators have

addressed this conceptual difficulty by engaging students in

actual experiments whose outcomes contradict the errone-

ous predictions. Yet whereas empirical activities per se are

crucial for any probability design, because they introduce

the pivotal contents of randomness, variance, sample size,

and relations among them, empirical activities may not be

the unique or best means for students to accept the logic of

combinatorial analysis. Instead, learners may avail of their

own pre-analytic perceptual judgments of the random

generator itself so as to arrive at predictions that agree

rather than conflict with mathematical analysis. I support

this view first by detailing its philosophical, theoretical,

and didactical foundations and then by presenting empiri-

cal findings from a design-based research project. Twenty-

eight students aged 9–11 participated in tutorial, task-based

clinical interviews that utilized an innovative random

generator. Their predictions were mathematically correct

even though initially they did not discern variations. Stu-

dents were then led to recognize the formal event space as

a semiotic means of objectifying these presymbolic

notions. I elaborate on the thesis via micro-ethnographic

analysis of key episodes from a paradigmatic case study.

1 Introduction

The road to modeling a probability experiment is paved

with good intuitions. Yet these intuitions often lead the

traveler to inferences that conflict with mathematical the-

ory and empiricism, so that the traveler must abandon all

intuition and trust the well-traveled road. This essay is

about the road not taken. Traveling this other road, learners

may be able to sustain their intuitions as a means of

grounding mathematical analysis.

Underlying the well-traveled road to compound events

is a common cognitive–pedagogical assumption that

learners will tend to modify their erroneous theory in the

face of empirical evidence that contradicts their inferences.

The didactical utility of this approach notwithstanding, the

objective of this paper is to bring into question its alleged

status as the sole pedagogical road to combinatorial anal-

ysis. Perhaps learners could instead ground the logic of

combinatorial analysis in naı̈ve perceptual reasoning?

I will attempt to support my thesis by discussing a

design-based research project that investigated the cogni-

tion and instruction of probability. Previous publications

argued for the didactical potential of the design used in that

project and explained the cognitive–semiotic mechanisms

by which that potential was realized by a tutor and students

via discursive interaction (Abrahamson, 2009a, 2009b,

2012a, 2012b; Abrahamson, Gutiérrez, & Baddorf, 2012).

In this essentially theoretical paper, I assume the role of a

reflective practitioner, and in particular a ‘‘designer [who]

reflects-in-action on the construction of the problem, the

strategies of action, or the model of the phenomena, which

have been implicit in his moves’’ (Schön, 1983, p. 79, my

italics). More accurately, I step back ‘‘post intentionally’’

to deconstruct and reconstruct the project’s ‘‘fleeting

intentional meanings’’ (Vagle, 2010, p. 405). In particular,
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I aim to elucidate the cognitive–pedagogical position

underlying the project’s design rationale and implicit to

‘‘the discursive construction of mathematical thinking in

the research process’’ (Barwell, 2009, p. 255). As such, the

epistemological tenor of this essay is not an intact empir-

ical inquiry per se but rather a retrospective reflection on

what may be the most broadly generalizable theoretical as

well as practical conclusion from a decade of intensive

studies that have been summarized in peer-reviewed arti-

cles. Therefore, the intellectual scope of this essay will be

disproportionally far-reaching as compared to its empirical

illustration, whose rhetorical function will be primarily to

contextualize the reflection. To the extent that my asser-

tions constitute a contribution to the field, they do as much

by inviting the reader to reflect on the epistemological

premises of their own work.

To remove any misunderstanding, let me emphasize that I

am by no means proposing to abolish empirical activities

from probability instruction. That would be absurd, because

actual experiments are essential for creating meaningful

contexts in which students experience randomness, variance,

and sample size as these relate to Classicist probability.

Rather, I propose to interrogate implicit epistemological

assumptions regarding the pedagogical role of experimenta-

tion in the case of introducing students to combinatorial

analysis. The significance of this interrogation is in the dire

consequences of ignoring the epistemic capacity of tacit

perceptual reasoning. As long as we persist in assuming the

inherent frailty of primary probabilistic intuition, I caution,

we will continue to design and research activities that only

further confirm this assumption.

I am thus proposing to consider perceptual reasoning as

an alternative or complementary epistemic resource for

students to understand compound events. Immediately

below, I will discuss theoretical foundations for this central

idea of an ‘‘epistemic resource’’. I will then explain the

particular instructional design that was developed and

empirically researched in the project. Next, I will overview

findings from the implementation of that design with stu-

dents in Grades 4–6 (9–11 years old) and then focus on

vignettes from a case study of one student. The paper

concludes with an evaluation of the central thesis and its

implications for probability education.

2 Theoretical orientation

The construct of an epistemic resource is central to my

thesis on pedagogical design for probability. Below, I

briefly elaborate on this construct from the perspectives of

educational philosophy, theory, and practice. Once I have

defined the construct of an epistemic resource, I will

exemplify its theoretical utility for analyzing mathematics

designs. In particular, the construct will enable me to

revisit the role of actual experiments in the instruction of

combinatorial analysis and explore whether perceptual

reasoning might play a compatible or even preferred epi-

stemic role. First, though, I lay out the specific educational

terrain wherein this argument evolved.

2.1 An enduring design problem and a critique

of prevalent solutions

The construct of an epistemic resource emerged from my

attempts to design a compound-event random generator

that responds to empirical findings in the mathematics

education research literature (Abrahamson, 2009a). When

analyzing compound-event random generators, students

typically do not appreciate the relevance of order among

singleton events (Batanero, Navarro-Pelayo, & Godino,

1997). For example, students who are guided to list all the

possible outcomes of flipping a pair of coins, or are pre-

sented with the complete list, do not appreciate why HT

and TH should be differentiated. Consequently, the stu-

dents perceive the experiment’s event space to be [HH, HT,

TT] rather than [HH, HT, TH, TT] and thus infer that a

head-and-tail event will occur 1/3 of the time, whereas the

event should be expected to occur 1/2 of the time (Abra-

hamson & Wilensky, 2005).

A plausible pedagogical response is to create for stu-

dents situations in which empirical experimentation con-

flicts with predictions based on erroneous combinatorial

analysis (Pratt, 2000; Wilensky, 1995). Upon acknowl-

edging conflict between predicted and actual experimental

outcomes, students are expected to respond rationally by

reflecting on their theory and adjusting it until it fits the

ineluctable facticity of empiricism (see Karmiloff-Smith,

1988; von Glasersfeld, 1987). Indeed, the human capacity

to build and refine theoretical models that generate

deductive inferences in line with unanticipated empirical

evidence is a hallmark of inquiry and innovation (Kosch-

mann, Kuuti, & Hickman, 1998; Shank, 1998). Creating for

students opportunities to experience and overcome confu-

sion may thus bear the supplementary benefit of fostering

important meta-cognitive skill. Notwithstanding, perhaps

educators should reserve those learning experiences for

concepts that are beyond intuitive grasp. Outcome distri-

butions of compound random events, I submit, are within

intuitive grasp, given appropriate design. Let me elaborate.

Implicit to the design rationale of pitting students

against their own erroneous expectation so that they adopt

mathematical analysis is the assumption that complex

stochastic phenomena are inherently counterintuitive

(Kahneman, Slovic, & Tversky, 1982), so that students

cannot readily develop what Fischbein (1975) calls ‘‘sec-

ondary intuition’’ for these concepts. And yet, as a
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pedagogical design-based researcher holding a construc-

tivist epistemological worldview, my modus operandi is to

hesitate before announcing that a mathematical concept is

intrinsically unfathomable (Núñez, Edwards, & Matos,

1999). As such, I am committed to investigating the roots

of students’ intuitive reasoning and nurturing those roots

toward the targeted didactical content rather than deraci-

nating and supplanting intuitive roots with formal proce-

dures that consequently become subjectively arbitrary

(Borovcnik & Bentz, 1991; Bruner, Oliver, & Greenfield,

1966; Gigerenzer, 1998; Smith, diSessa, & Roschelle,

1993; Streefland, 1984; Wilensky, 1997). Specifically, this

radical-constructivist worldview assumes that if we dig

deep enough, we will find intuitive roots whose situated

enactment resonates with inferences drawn from mathe-

matical analysis of compound random events. If we found

such roots and nurtured them, then students’ informal

inference from ‘‘primitive’’ perceptual reasoning would

constitute an epistemic resource—alternative to experi-

mental empiricism—for grounding compound event spaces

and formal combinatorial analysis.

As an educational designer, I surmise that eliciting from

students mathematically viable intuitions that are aligned

with compound event spaces may require the construction

of suitable interaction contexts, and in particular an inno-

vative random generator that affords this intuitive reason-

ing. As a learning scientist, I am conscious that intuitive

roots may not grow directly into formal structures, so that

fostering an understanding of combinatorial event spaces

may involve grafting, mapping, or molding cultural forms

upon intuitive roots. Just how this negotiation might be

accomplished is of great interest and concern for design-

based researchers of mathematical learning.

Having explained the content terrain and philosophical

orientation of my thesis, I can now elaborate on its central

construct, an epistemic resource.

2.2 Epistemic resources, pedagogical artifacts,

and guided learning

When I evaluate the epistemic role of a pedagogical

activity, I consider learners’ subjective sensations and

inferences arising from that activity and I refer to the

potential capacity of this cognitive content to facilitate

learners’ appropriation of relevant formal analysis. For

example, consider the notions that empirical experimenta-

tion evokes. Once empirical results are obtained, repli-

cated, and validated, the rational response is to view these

results as bearing on the truth-value of prior hypotheses

pertaining to anticipated results. As such, any erroneous

beliefs that had been held as true are re-tagged as tentative,

imprecise, or incorrect—their epistemic status is altered in

accord with the activity’s results. On the other hand,

learning activities may result with a student bolstering their

beliefs. In both cases, the activities played an epistemic

role by either supporting or refuting an existing notion.

In this paper I am interested specifically in the con-

ceptualization and engineering of epistemic resources for

grounding formal mathematical analysis inherent to the

structure of a compound event space. I apply the proposed

construct of an epistemic resource as a design–researcher’s

mid-level analytic lens, that is, a heuristic means of

building and evaluating activities vis-à-vis grand learning

theory (Ruthven, Laborde, Leach, & Tiberghien, 2009).

More broadly, by developing the construct of an epistemic

resource, I wish to stir discussion among mathematics-

education theoreticians and designers over the relative

merits of learning activities that either conflict or cohere

with presymbolic notions and inferences.

Students’ notions and inferences that constitute pro-

spective epistemic resources for learning mathematical

content need not be couched in formal semiotic register.

For example, these subjectively veridical notions might be

visual/imagistic (Arnheim, 1969; Barwise & Etchemendy,

1991), auditory (Bautista & Roth, 2012), kinesthetic

(Nemirovsky, 2011), somatic (Damasio, 2000), or diag-

nostic (Braude, 2012). As such, I treat pre-articulated,

informal, embodied notions as epistemically bona fide

cognitive content bearing directly on inferential reasoning.

Theoretical antecedents of this epistemological perspective

can be found in cultural–historical psychology (Vygotsky,

1962), cognitive linguistics (Lakoff & Johnson, 1980),

philosophy (Polanyi, 1967), and cognitive science (Barsa-

lou, 1999). Also well established is the pedagogical

sequence of first evoking learners’ presymbolic notions and

then fostering these notions as personal resources for

learning formal cultural procedures (Diénès, 1971; Freu-

denthal, 1983; Froebel, 2005; Montessori, 1967; Skemp,

1983). In particular, developmental psychologists have

demonstrated pre-articulated notions bearing quantitative

information relevant to understanding mathematical ideas

(see Carey, 2011; Dehaene, 1997). For example, some a/b

mathematical objects are perceptually privileged (Gelman,

1998): we experience the slope of a line / as a gestalt

intensity, not as piecemeal rise | over run _.

However, mathematical ideas are difficult to come by

without guidance, so that learners generally need to par-

ticipate in social activities by which knowledge is mediated

(Newman, Griffin, & Cole, 1989). Often these pedagogical

activities involve engaging a problem as well as available

media proposed by an instructor as means of exploring and

pursuing solutions to the problem. In so doing, participat-

ing students are encouraged to construct and interact with

artifacts bearing semiotic potentiality of constructing ped-

agogically targeted cultural forms; instructors steer stu-

dents to adopt these cultural forms via nuanced discursive
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orientating (Mariotti, 2009) and by highlighting the forms’

contextual utility for students’ situated purpose (Pratt &

Noss, 2010; Saxe, 2004). Generally speaking, education

practitioners seek to create conditions under which children

will endorse mathematical analyses of phenomena under

inquiry as a means of satisfying an ecologically authentic

need, be it enactive (Abrahamson, Trninic, Gutiérrez, Huth,

& Lee, 2011), epistemic (Harel, 2012), or meta-discursive

(Sfard, 2007).

We are left with a paradox. On the one hand, we assume

the epistemological position that presymbolic notions and

mathematical analyses are disparate forms of knowledge

(Piaget & Inhelder, 1969, pp. 46–48). On the other hand,

we assume the pedagogical position that presymbolic

notions are necessary for grounding formal knowledge

(Bruner et al., 1966). And yet, formal analysis cannot

always be direct articulation of tacit judgment, because

formal analysis often requires one to parse source phe-

nomena in ways that are very different from naı̈ve per-

ception (Bamberger & diSessa, 2003). How, then, might

we theorize the ‘‘dialogue’’ of tacit and formal knowledge?

What is the nature of the ‘‘membrane’’ between these

epistemically disparate forms of knowledge by which

grounding occurs?

2.3 Radford’s semiotic–cultural theory as informing

a design approach

The role of presymbolic notions in mathematical learning

is elegantly modeled via the semiotic–cultural approach put

forth by Luis Radford (2000, 2003). In Radford’s neo-

Vygotskian theoretical perspective, learners appropriate a

mathematical form if it occurs to them ad hoc in some

situated context as serving a cognitive–discursive function.

Specifically, students engaged in problem-solving activities

will use a new form, such as a symbol, a diagram, or an

icon, if they are able to construe the form as a semiotic

means affording the objectification of a presymbolic notion

they wish to express—a thought they are trying to articu-

late, capture, grasp, anchor.

The semiotic–cultural theory, I maintain, can be inter-

preted as bearing implications for pedagogical design

(Abrahamson, 2009a). In the remainder of this section I

briefly overview a general design framework derived from

this theory, ‘‘perception-based design’’ (Abrahamson,

2012a). In later sections I will exemplify the framework via

presenting the probability design used in this project.

Radford’s theory informs the creation of materials and

activities for supporting the construction of new mathe-

matical signs as coordinations of spontaneous and scientific

resources. The rationale of this pedagogical design

framework is that educators can and should take measures

to facilitate students’ objectification of relevant

presymbolic notions in mathematical forms, and the charge

of design-based researchers is to identify and elicit these

notions as well as to create ‘‘bridging tools’’—appropriate

versions of standard forms that have been tailored to res-

onate with these notions.

As such, in order to foster student construction of a

particular sign, two substantive pedagogical resources are

necessary: (a) a source phenomenon that evokes presym-

bolic qualitative notions and inferences in agreement with

formal quantitative analysis of the phenomenon; and (b) a

mathematical model of the phenomenon, where the model

is a customized isomorph of its standard configuration that

renders it conducive to relevant perceptual reasoning. Yet

how might we approach the engineering of these resour-

ces? We return to cognitive science.

Humans have the cognitive capacity of sensing holisti-

cally certain magnitudes that science models as relations

between two magnitudes. For example, object constancy is

established by the brain tacitly comparing between retinal

images of shapes on the basis of their aspect ratio (i.e.,

height/width, Suzuki & Cavanagh, 1998). This affords

education researchers auspicious epistemological tension

between percept and concept. We can investigate whether

and how tacit knowledge might afford epistemic resources

for conceptual development and how social interaction

might facilitate this process.

Accordingly, the targeted mathematical notion in

designs deriving from the perception-based framework is

typically an a/b intensive quantity, such as slope, density,

or velocity, and this quantity is embodied in the source

phenomenon as the property of a perceptual stimulus.

Students’ attention is oriented toward this specific property

by engaging them in a presymbolic problem-solving

activity in which determining a qualitative sense of this

property bears utility for accomplishing an objective. Next,

the child is asked to consider a mathematical resource that

is introduced into the problem space, for example a mea-

suring instrument, as bearing further utility for refining

notions evoked by the phenomenon. The child is guided to

apply this mathematical resource and, through engaging in

this process, to create a product, such as a set of numerical

values, a diagram, or an event space. During this process,

or upon completing it, the child is to ‘‘discover’’ a way of

seeing the mathematical product as a means of objectifying

their presymbolic notion that had been evoked by the

source phenomenon, and the child might articulate a gen-

eral principle. Only then might the child retroactively

accept the analysis process by which the product was

constructed.

This heuristic design framework for embodied mathe-

matical learning, which is elaborated elsewhere (Abra-

hamson, 2009b, 2012a, 2012b; Abrahamson & Wilensky,

2007), informed the development of a design for the
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binomial. I will now describe the design rationale, mate-

rials, and activities and then present overall findings as well

as a paradigmatic episode from its implementation. I will

interpret the episode as supporting my claim that presym-

bolic notions of chance can serve as an epistemic resource

for grounding compound event spaces.

3 A design for the binomial: rationale, build,

and results of the ‘‘seeing chance’’ activity

Chance, like slope or aspect ratio, is a perceptually privi-

leged intensive quantity. On the one hand, humans are

capable of perceptual judgments of random phenomena

that elicit a gestalt sensation of likelihood (e.g., see Xu &

Garcia, 2008). On the other hand, the chance of an event

occurring as a result of operating a random generator is

formally quantified as the quotient of two values: the total

numbers of favorable and possible outcomes. Accordingly,

in planning a design for probability I sought to create sit-

uations that would elicit primitive perceptual mechanisms

relevant to the content of compound events, while con-

currently reconfiguring the standard event space so as to

accommodate perceptual reasoning. In accord with the

semiotic–cultural approach and the notion of an epistemic

resource, students were to construe this customized event

space as semiotic means for objectifying their presymbolic

sensation of likelihood. Below I present results of this

iterative design process.

3.1 Design-based research question

As a researcher of mathematics learning, who was inter-

ested in building a design for compound events, I asked:

(a) what subjective notions of chance could potentially

ground its formal analysis; (b) what sensations could give

rise to these notions; (c) what source phenomena might

evoke these sensations; (d) what framing activities with the

source phenomena would evoke these sensations and

notions; (e) what variants on standard mathematical forms

might best accommodate students’ perceptual reasoning;

and (f) what discursive interaction would best support

student coordination of these informal and formal views?

3.2 Cognitive domain analysis

Apparently, babies are sensitive to relations between the

color make-up of a population of objects and a sample from

the population. When the sample is configured as a

sequence of discrete singleton outcomes, such as [Green

Green Blue Green], babies’ statistical judgment indicates

that they ignore this internal order but treat the color ratio

to gauge the sample’s representativeness vis-à-vis the

population (Xu & Garcia, 2008). It thus appears that col-

lections of colored objects can evoke in young children

presymbolic qualitative notions that loosely correspond to

formal measures of these collections’ stochastic propensi-

ties. It further appears that these notions emanate from

comparing two sensations, one evoked by a source and one

by its sample.

These findings from cognitive developmental psychol-

ogy indicate the activation of an endemic perceptual

capacity—an evolved ‘‘enabling constraint’’ on perceptual

reasoning (Gelman, 1998) or ‘‘ecologically intelligent’’

behavior (Gigerenzer, 1998). The findings also resonate

well with conclusions in Kahneman et al. (1982). That is,

people perceive HTHT as a more likely outcome of flip-

ping a coin four times than the equiprobable HHHH,

because HTHT has equal numbers of H and T, thus

evoking a sensation more in accord with the random gen-

erator that produced it, a fair coin.

For education, the implications are a paradoxical rela-

tion between framing and perception. When students attend

to ‘‘HTHT’’ in the context of comparing its likelihood to

‘‘HHHH’’, they mentally construct ‘‘HTHT’’ as ‘‘2H2T’’

without attending to order. And yet the aggregate event

2H2T truly is more likely than the event 4H—it is six times

as likely! Thus people demonstrate mathematically correct

inferences for mathematically incorrect models of phe-

nomena (Abrahamson, 2009b). Indeed, in a controlled

experiment we found that students who attended to

‘‘HTHT’’ in the context of a probability activity, as com-

pared with a counting activity, were more likely to ignore

or resist the order of singleton events (Mauks-Koepke,

Buchanan, Relaford-Doyle, Souchkova, & Abrahamson,

2009). It follows that when students’ perception-based

probabilistic reasoning is evoked, they should become

inclined to draw mathematically correct inferences about

the likelihood of events-seen-as-aggregates even as they

become disinclined to attend to particular variations on

these events. What should a designer do?

3.3 Design rationale

The above cognitive domain analysis bears directly on

design rationales for the domain. In particular, the cogni-

tive domain analysis orients the designer in creating

materials and activities for supporting students’ grounded

learning of formal views on compound-event experiments.

To begin with, it turns out that the source phenomenon for

our design might be a random generator composed of a

large collection of objects (the ‘‘population’’), small col-

lections of objects (the ‘‘samples’’), and an indication that

the small collections came from the large population. For

example, there may be some device that draws a small set

of objects out of the population. When students are asked
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to comment on the likelihood of a particular sample, they

would respond by activating schemas that evoke sensations

of ratio representativeness vis-à-vis the population, and

from these sensations they would infer notions of relative

likelihood, such as a sense of a particular event’s plurality

as compared with other events. The students would then

objectify these presymbolic notions of likelihood in

mathematical form by utilizing dedicated semiotic means

that are made available to them in the learning environ-

ment. We now discuss a customized configuration for the

compound event space designed to afford the objectifica-

tion of these notions.

Recall that students construe compound events without

attending to the specific internal order of singleton out-

comes. How, then, might a student ground a formal per-

mutation-based event space in these informal,

combination-based, holistic presymbolic notions? Practi-

cally, what semiotic means of objectification should a

designer build so as to enable students to leverage their

naı̈ve perceptual reasoning as an epistemic resource for

accepting compound event spaces? Per the framework

outlined earlier, the designer should consider formatting

the standard display of an event space using expressive

media, representational elements, and spatial form that

render the display conducive to perceptual reasoning and

instructional discourse, such that students would be able to

align and coordinate their informal inferences with formal

analysis. The following explanation of the design built for

our project will clarify the above rationale.

3.4 Design build, methods, and implementation results

Figure 1 shows images of the resources created for the

design: (a) a concrete random generator; (b) media for

building an event space via combinatorial analysis of the

random generator; and (c) an innovative form of organizing

the event space so as to make it more conducive to heu-

ristic perceptual inference. In addition, I designed and built

a suite of computer-based simulations of the experiment

featuring schematic models of the random generator. As

the simulated experiments run, the model aggregates

cumulative results either in standard bar charts or in pic-

tographs composed of iconic representations of the actual

random outcomes (see in Abrahamson, 2006).1

As researchers developing both theory and artifacts, we

operate in the design-based research approach (Collins,

1992). Our conjecture-driven interventional study was in

the form of an explorative, task-based, semi-structured,

tutorial clinical interview (Goldin, 2000). As such, our

interview protocol can be viewed as part of the pedagogical

design as much as it is an investigative instrument—it is

both a means of eliciting student response and a potential

contribution to educational practice (Cobb, Confrey, di-

Sessa, Lehrer, & Schauble, 2003). Subsequent to collecting

data, we employed extensive micro-ethnographic collabo-

rative analysis to build coherent, consistent, consensual

theoretical models that purport to explain across the data

corpus how interactions led to conceptual outcomes

(Schoenfeld, Smith, & Arcavi, 1991).

We worked individually with 28 students aged

9–11 years. First, we had students briefly examine the

random generator’s experimental mechanism (see Fig. 1a).

Immediately after, we asked, ‘‘What do you think will

happen when I scoop?’’ Importantly, the students did not

conduct any actual experiment at all, so that their

responses were based only on perception and reasoning.

In accord with the design rationale, students tended to

offer likelihood judgments that agreed with mathematical

theory. In particular, they predicted a plurality of 2g2b (2

green and 2 blue) samples, a rarity of both 4b and 4g, and,

in between, the events 1g3b and 3g1b. When asked to

support their responses, students referred to the equal

number of green and blue marbles in the bin.

We next offered the students a stack of cards bearing a

schematic iconic representation of the empty marbles

scooper (see Fig. 1b) as well as a green crayon and a blue

crayon, and we asked them to show us what we might get

when we scoop. Confirming our cognitive domain analysis,

the students were ‘‘blind’’ to order. They tended initially to

create only five cards, one for each of the aggregate events

4b, 1g3b, 2g2b, 3g1b, and 4g. We guided them to create

variations on each of these events (to expand the 1-1-1-1-1

distribution into 1-4-6-4-1). Whereas the students were

generally able to produce these variations, they claimed

that these supplementary objects were irrelevant semiotic

means to completing the task of showing possible outcomes

or supporting their earlier predictions for what would

happen when we scoop. We then guided the students to sort

the 16 cards according to these 5 event classes and
1 Strictly speaking, the physical marbles-scooping experiment is

hypergeometric, not binomial, because as each marble is captured by

a concavity in the scooper, there is one less of that color in the bin.

However, the fairly minute ratio of the sample size (4) to the total

number of marbles in the bin (hundreds) enables us to think of this

experiment as quasi-binomial and, for all practical effects, as actually

binomial. In this paper I do not expand on the computer-based

simulations, because my thesis here pertains primarily to students’

perceptual judgments of the random generator itself and, in particular,

how students coordinated these judgments with their guided

Footnote 1 continued

perceptions of the event space. Moreover, my experimental design

was such that students engaged the computer activities only after they

had made sense of the event space, so that any observations of stu-

dents grounding the actual outcome distribution in the event space are

contaminated by the prior activities. That is, the study was designed

as an experimental unit, not a comparison experiment.
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assemble them in a spatial configuration that highlights

quantitative relations among these 5 sets (see Fig. 1c).

Once this tower had been fully assembled, a ‘‘strange’’

thing happened. Students tended to endorse all 16 cards as

pertinent to the task. In particular, they now were willing to

accept the event space, stating that the five discrete sets

explain their own notions of the five aggregate events’

relative likelihoods. Students’ insight can be modeled as a

heuristic semiotic leap via guided abductive reasoning

(Abrahamson, 2009b, 2012b).

I have now presented the design and overviewed results

from its implementation. In particular, I have offered

empirical evidence to support the plausibility of a thesis by

which presymbolic perceptual judgment can serve as an

epistemic resource for grounding the logic of a compound

event space, given appropriate design. I now focus on an

episode from these data that contextualizes the thesis with

authentic, idiosyncratic circumstances and interactions. In

the interest of communicating the pedagogical entailments

of this design approach, the analysis highlights the tutor’s

pivotal and complex role in scaffolding the student’s

learning toward initial insights as well as beyond them.

4 A paradigmatic episode: the case of Tamar

Tamar (pseudonym) is a sixth-grade middle-school female

student characterized by her mathematics teachers as

‘‘middle achieving’’. We will discuss only the first 25 min

of Tamar’s hour-long interview, because after that point

she engaged in computer-based simulations that go beyond

the scope of this paper. This particular episode was

selected from the data corpus as paradigmatically demon-

strating all participants’ struggle to coordinate tacit and

analytic views, albeit Tamar’s particular resolution of this

struggle was unique.

Asked what would happen when we scoop, Tamar sin-

gled out the 2g2b event as most likely as compared with

each of the other four aggregate events. Asked to support

her prediction, Tamar alludes to a perceptual judgment of

the source phenomenon:

It’s like a 50–50 chance of getting two-green-two-

blue…because it kinda looks like there’s an even

amount of them [green and blue marbles in the con-

tainer], so if you scoop, it’s, like, yeah…2

The researcher encouraged Tamar to explain further or

be more rigorous, but she could not offer any more insight

on this subject.

Soon after, once Tamar had created the expanded sam-

ple space, so that the cards were spread out on the desk in

loose order, the researcher asked her whether the cards had

any bearing on her earlier prediction. She responded:

I’m not…I think that…I’m not sure…I just…yeah…

Thus whereas Tamar was able to conduct combinatorial

analysis per se, she did not intuit the practical objective of

this activity—neither its process nor its product. In par-

ticular, Tamar had yet to discern any relation between the

number of variations per event and the relative likelihood

of events.

The researcher guided Tamar to organize the sample

space cards by the number of green singleton events, and

Tamar assembled the 16 cards into the tower (see Fig. 2).

Fig. 1 Materials used in a design-based research project investigat-

ing relations between informal intuitions for likelihood and formal

principles of the event space: a a ‘‘marbles scooper’’, a utensil for

drawing out ordered samples from a box full of marbles of two colors;

b a card for constructing the sample space of the marbles-scooping

experiment (a stack of such cards is provided, as well as a green

crayon and a blue crayon, and students color in all possible

outcomes); and c a ‘‘combinations tower,’’ a distributed event space

of the marbles-scooping experiment, structured so as to render

quantitative relations among the events conducive for heuristic

perceptual inference

2 Square brackets communicate indexical information with respect to

speech referents, which can be gleaned quite unequivocally from the

agent’s gestures.
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The researcher then asked Tamar whether she had any new

observations. Tamar surveyed the assembly and offered

that she had overestimated the chance of 2g2b:

It actually seems like it could be more…like it’s not

exactly 50–50 chance of getting two-and-two [as

compared to] getting something totally different,

because there are more…There’re a lot more com-

binations and stuff…Now I think there’s actually

more chance of getting something different.

The researcher asked Tamar whether she knew how to

express this idea otherwise, perhaps with numbers. Tamar

said she does not—‘‘It’s just, looking at it, it seems like

that.’’ Thus whereas Tamar’s perceptual reasoning was

proportional, her explicit reasoning was not, possibly

because she was not sufficiently fluent in rational numbers.

To the extent that the above transcription is of interest to

researchers of probability education, I would like to sug-

gest that what is interesting about it is what Tamar did not

say more so than what she said. Namely, I am referring to

Tamar’s facile endorsement of the compound event space

concurrent with its stochastic implications. Tamar, who

only 10 min prior was unable to suggest any rigorous

means of supporting her prediction for the plurality of 2g2b

beyond referring to the color ratios in the box, and who

still could not offer an explanation once the event space

was completed yet scattered on her desk as 16 discrete

items, immediately assumed mathematically appropriate

analytical reasoning once the event space was reconfigured

so as to make salient the number of outcomes per event.

Per semiotic–cultural theory and the perception-based

design framework, once the event space was more condu-

cive to perceptual reasoning Tamar availed of these

material means so as to objectify and modify her qualita-

tive notions. She linked sensations of differential repre-

sentativeness in the random generator with differential

discrete quantities across the five event sets. This heuris-

tical anchoring of qualitative sensation in an enumerable

display is striking in its educational significance precisely

due to its discursive insignificance.

Still, heuristical anchoring of presymbolic holistic

notions in articulated analytic structures does not imply

conceptual understanding. In fact, there is much work to do

in order to render this implicit reasoning explicit and

available for reflection. In particular, such anchoring may

engender struggle over contrasting meanings of ambiguous

objects—informal and formal meanings (Abrahamson

et al., 2012; Abrahamson & Wilensky, 2007). For example,

does Tamar see a particular 3g1b card as 1 of 16 equi-

probable elemental events or as 1 of 5 heteroprobable

aggregate events? Is she conscious of how she is seeing the

outcome and why she sees it as such?

The researcher (Dor) lifts up two cards from the com-

pleted combinations tower and holds them side by side,

well within Tamar’s visual field. Looking at Fig. 2, these

are the single 4g card on the far right and the 3g1b card

immediately to its left3:

Dor: Is one of these patterns more likely to show up

than the other?

Tamar: I actually think that this one [3g1b] is more likely

to get, because it seems like it’s harder to just get

four of one color than to have it more mixed.

Tamar views the particular 3g1b card as ‘‘more mixed’’

than the single 4g card. Her assertion would be mathe-

matically correct if she had qualified the ‘‘more mixed’’ as

the collective property of all the 3g1b cards. Indeed, it is

four times as likely to sample any one of the 3g1b cards

than the single 4g. Only that Tamar’s speech utterance

explicitly indexed not the collective of all 3g1b cards but a

specific 3g1b card that is in fact equiprobable to the 4g

card. As such, Dor and Tamar share a referent—the par-

ticular card—but they construct it differently, with Tamar

seeing it as 3g1b per se and Dor seeing it as the 3g1b card

with blue in its bottom-right-hand corner (Abrahamson

et al., 2009). Tamar’s interaction with the 3g1b card is

analogous to seeing HHTH as 3H1T and inferring that it is

more likely than HHHH. Yet this finding is more striking

Fig. 2 The ‘‘combinations tower’’, a compound event space, that

Tamar was guided to generate and assemble. The vignette will

culminate with Tamar’s reasoning as she compared the likelihoods of

two possible outcomes represented by cards on the bottom row of this

structure: the all-green outcome on the far right and a three-green-

and-one-blue outcome immediately to its left

3 An accompanying video clip of 201500 min duration can be viewed

online at http://tinyurl.com/dor-tamar.
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than the Kahneman and Tversky work, because here the

entire event space is explicitly available for inspection. The

constructivist tutor’s challenge becomes to help Tamar

sustain these order-blind presymbolic notions of likelihood

while guiding her to re-map these notions onto card sets

rather than individual cards, in accord with mathematical

analysis. In a sense, the tutor has to help the student re-wire

a sign:

Dor: Ok, so that’s interesting—what you’re saying

is…
Tamar: It’s like a 50–50 [the two patterns are of equal

likelihood] but…it’s just…to me it seems like

that [3g1b] would get more.

Tamar fluctuates between a view of the 3g1b card as a

heteroprobable aggregate event and as an equiprobable

elemental event. But she is becoming conscious of this

tension.

Tamar may not be able to resolve this tension on her

own. It is Dor’s role, in his capacity as tutor, to facilitate

and encourage Tamar’s awareness of her competing

interpretations, while negotiating language and forms by

which she may own, accept, and further articulate both

interpretations. What Dor chose to do is guide Tamar

toward realizing that she is sometimes seeing the particular

3g1b card as an order-less event:

Dor: Now, I want for us to be careful with the

definitions here, because you said this [4g] is all

green and this [3g1b] is mixed. So…[3 s silence]

Tamar: Well, it’s actually harder to get just that pattern [the

particular 3g1b card], I guess, so it’s, like, even [i.e.,

equivalent chances of getting the particular 3g1b

card as compared with the 4g card].

When Tamar says, ‘‘It’s actually harder to get just that

pattern’’, she appears to be comparing the specific 3g1b

card not to the 4g card but to the entire group of 3g1b

cards. Dor asks for clarification:

Dor: Oh, ok. Can you explain to me now what just went

on in your mind when you made that observation?

’Cause that’s important for me. [He places the two

cards back on the desk in their respective locations.]

Tamar: Well, I just, like, saw all of them [the event

space] and just…At first I thought that if you got

[the particular 3g1b card]…It could be anyone of

those that…[any of the four different 3g1b

cards], and then I like just stared at that one

[the particular 3g1b card], and I knew that it was,

like, just as hard, because you have to get that

exact pattern, so…

Tamar is reflecting upon her construction of the partic-

ular 3g1b card. Initially, she had construed it intuitively as

an aggregate event, one of five in the entire space, but then

she attended to it analytically as a specific pattern whose

likelihood is equiprobable to the other cards in the space.

Dor explores how robust this new awareness may be by

orienting Tamar to other event columns in the tower and

essentially reiterating the previous question. As we will

see, Tamar’s awareness was not too robust:

Dor: Is there any exact pattern in this field…this

space, or collection [the event space]…that is…I

don’t know…easier or harder to get than any

other particular pattern?

Tamar: No, I don’t think so.

Dor: Interesting. So…
Tamar: Well, I think that this [a particular 2g2b card at

the bottom of its column] might be a little bit

easier [than 4g], because it’s…well, I don’t

know! It just seems more difficult, to me, to get

four of one color than to get them mixed.

We see that Tamar, upon attempting to generalize her

embryonic awareness about objects in the event space,

from the 3g1b column to the 2g2b column immediately

adjacent to its left, ‘‘regressed’’ to the holistic view of

individual cards. Tamar is in transition:

Dor: Ok…but do you have the sense of what you’re

flipping between? On the one hand, you’re

saying ‘‘to get mixed’’, and you’re kind of

referring to the whole thing [the entire 2g2b

column], but…
Tamar: Yeah…
Dor: …then, when you stare at one [the particular

2g2b card at the base of the column]…
Tamar: Yeah…I, I think it’s even…
Dor: Do you recognize the little confusion…
Tamar: Yeah.

Dor: …that there is here between the specific pattern

and the group?

Tamar: Yeah.

Dor: Ok, that’s a confusion I think we have to sort out,

I think, in order to, like, understand this stuff.

The dyad continues to clarify terms, and Tamar achieves

stability within under 2 min. Next, they move on to work

with the computer simulations of the experiment.

In sum, when Tamar was able to make sense of the event

space vis-à-vis the experiment it analyzes, she did so by

drawing on her notions of relative likelihood, which she

had gleaned from scrutinizing the random generator. She

had not run any experiments with the device beyond sev-

eral introductory scoops that demonstrated its mechanism,

and so she could not have drawn on empiricism. To

emphasize, if Tamar had not established any notion of

likelihood prior to seeing the event space, she could not
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have made sense of the space in its totality—the event

space would not have appeared to signify the experiment’s

probabilistic propensities.

5 Conclusion

Steinbring (1991) recommends that probability designs

interleave classicist and frequentist activities: students

should learn to approach randomness experiments by

determining their theoretical propensity, analyzing actual

experiments, and aligning inferences across these two

activities. My thesis did not challenge this view and in fact

drew on findings from a project that emulated this view.

Rather, I have examined whether experimentation is the

only pedagogical means of enabling students to make sense

of classicist theory. Drawing on the learning-sciences lit-

erature as well as on findings from an empirical interven-

tion, I have argued for the viability of perceptual reasoning

as an epistemic resource—alternative to experimentation—

for students to ground the logic of combinatorial analysis

as the disciplinary means of modeling random compound

events. In particular, I have demonstrated that under aus-

picious design and steering, naı̈ve perceptual reasoning can

lead students to accept the differentiation of variations,

which has been a chronic challenge in probability educa-

tion (Jones, Langrall, & Mooney, 2007).

The pedagogical agenda of enabling students to ground

mathematical knowledge in tacit perceptual knowledge builds

at once both on cognitive developmental psychology

(Gelman, 1998) and sociocultural theory (Newman et al.,

1989). On the one hand, Piaget and Inhelder (1969) recog-

nized that concepts are not direct articulations of primitive

perceptual capacity, so that interaction and reflection are

requisite. On the other hand, developing logico-mathematical

models of phenomena depends on opportunities to appropriate

cultural forms through participating in social practice (Rogoff,

1990), typically educational activities. In reform-oriented

pedagogy, these activities characteristically involve experi-

ences with dedicated artifacts that augment informal experi-

ence, a tradition that in modern times can be traced back to the

first kindergarten created in 1837 by Froebel (2005). Earlier,

Rousseau wrote in his 1762 treatise on education, ‘‘As a

general rule—never substitute the symbol for the thing sig-

nified, unless it is impossible to show the thing itself’’

(Rousseau, 1972, p. 132).

As a design-based researcher with dual commitments to

radical constructivism and sociocultural theory, my frame-

work for building pedagogical artifacts resonates well with the

semiotic–cultural theory of objectification (Radford, 2000,

2003). In the case of random compound events, this paper has

demonstrated that learners can appropriate mathematical

analysis by objectifying presymbolic notions of probability

using a customized event space designed for this project.

Whereas naı̈ve perceptual reasoning and empirical exper-

imentation each may constitute an epistemic resource for

accepting the compound event space, these activities operate

differently and bear different conceptual entailments. Fig-

ure 3 asserts a didactical realization of these dual resources by

highlighting their analogous structures and function: each

constitutes a conceptually critical coordination that is

embodied in an activity across two artifacts in a design for the

binomial. The structural analogy and pedagogical comple-

mentarity of these activities is largely constrained by the event

space itself, which the activities share as a common artifact.

Double arrows indicate that learners need to interpret a new

artifact they encounter along the activity sequence as signi-

fying meanings they had established for a previous artifact: the

random generator suggests its own stochastic propensity, the

event space models this propensity, and the experimental

Activity:
   Combinatorial

    Analysis

Simulated

Experiment

Approach:               Naïve ⇔ Classicist ⇔  Frequentist

Artifact:
Random 

Generator

Event

Space

Experimental

Distribution

Fig. 3 Learning resource

trialogue in the seeing chance

design
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distribution exemplifies the propensity (see ‘‘trialogue’’ in

Wilensky, 1996).

Both perceptual and experimental approaches have the

potential to evoke notions commensurate with the theo-

retical outcome distribution; in both cases, making sense of

the event space is contingent upon and mediated by heu-

ristic mapping of notions and perceptions; and both activ-

ities may result in implicating the event space as explaining

the random generator’s propensities. Thus both naı̈ve and

frequentist conceptualizations ground the classicist artifact.

Notwithstanding their compatible epistemic role, naı̈ve

perceptual judgment of random generators is different from

experimental activity. Perceptual judgment has the capacity to

directly evoke presymbolic notions of distribution, the

mathematical property in question, as tacit inference from

sensations of ratio representativeness. In comparison, exper-

imental outcome distributions evoke these notions only indi-

rectly and as contingent on some minimal fluency with this

representational form. This difference between immediate

and mediated notions may confer on perceptual judgments a

unique advantage over experiments as candidate introductory

activities for learning the mathematics of compound events.

Working with, rather than against, a student’s perceptual

biases presents instructors with challenging dilemmas that

appear to trade off favorably with pedagogical gains. Thus,

curriculum developers who are interested in building on the

design presented in this study should bear in mind the pivotal

role of reflective classroom discourse around these activities.

Elsewhere, I have demonstrated the curricular extensibility of

these introductory activities along two dimensions: incorpo-

rating symbolic displays and considering cases of non-equi-

probable outcomes (Abrahamson, 2009a).

Students possess natural capacity to perform powerful

presymbolic perceptual reasoning pertaining to the study of

probability. Designers, teachers, and researchers may greatly

avail themselves by leveraging this power so as to support the

learning and continued investigation of this chronically

challenging subject matter. Along this road rarely taken, there

are yet miles to go.
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