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Try to See It My Way1: The Discursive Function
of Idiosyncratic Mathematical Metaphor

Dor Abrahamson, José F. Gutiérrez, and Anna K. Baddorf
Embodied Design Research Laboratory, University of California, Berkeley

What are the nature, forms, and roles of metaphors in mathematics instruction? We present and
closely analyze three examples of idiosyncratic metaphors produced during one-to-one tutorial
clinical interviews with 11-year-old participants as they attempted to use unfamiliar artifacts and
procedures to reason about realistic probability problems. Our interpretations of these episodes
suggest that metaphor is both spurred by and transformative of joint engagement in situated activ-
ities: metaphor serves individuals as semiotic means of objectifying and communicating their own
evolving understanding of disciplinary representations and procedures, and its multimodal instantia-
tion immediately modifies interlocutors’ attention to and interaction with the artifacts. Instructors
steer this process toward normative mathematical views by initiating, modifying, or elaborating
metaphorical constructions. We speculate on situation parameters affecting students’ utilization of
idiosyncratic resources as well as how socio-mathematical license for metaphor may contribute to
effective instructional discourse.

INTRODUCTION

When students contribute idiosyncratic metaphors to a mathematics classroom discussion, what
might be the purpose and utility of these utterances? On the one hand, one might believe,
metaphors are “off task” because they often do not include any numerical content. How, as
such, could metaphor possibly promote the development of mathematical knowledge? Moreover,
encouraging metaphors might preclude effective classroom discussion, given that each student
brings to bear subjective experience that is likely to be irrelevant to all other students.

On the other hand, it has been proposed that mathematical reasoning draws on nonquantitative
resources (Arcavi, 1994; Case & Okamoto, 1996; Johnson, 1987; Pirie & Kieren, 1994; Presmeg,
1986; Radford, 2006; Resnick, 1992; Thompson, 1993) and that mathematical instruction is
effective only to the extent that it engages multimodal imagery (Abrahamson, 2009a; Bartolini
Bussi & Boni, 2003; Dewey, 1928/2008; Edwards, Radford, & Arzarello, 2009; Lemke, 1998;
Nemirovsky & Borba, 2004; Papert, 1980; Presmeg, 2006). Indeed, dynamical images have been
implicated as instrumental to scientific and mathematical creativity, discovery, and invention

1Lennon, J., & McCartney, P. (“The Beatles”) (1965). We can work it out. London: Abbey Road Studios.
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56 ABRAHAMSON, GUTIÉRREZ, AND BADDORF

(Benfey, 1958; Black, 1993; Hadamard, 1945; Poincaré 1897/2003; Schoenfeld, 1991; Steiner,
2001; Wilensky, 1997). It thus appears we should not be too hasty in dismissing the possibility
that metaphor in fact bears potential utility for pedagogical practice.

To the extent that metaphor may indeed support individual mathematical learning, it would be
helpful to understand why and how students engage metaphorical reasoning, and which contexts
best enable productive metaphor-based discussion.

Authentic Idiosyncratic Metaphors Are Like Truffles

In this modest empirical article, we report on findings from retrospective analysis of data
originally collected during the implementation of a design-based research study. That study,
which investigated 9–11-year-old students’ probabilistic reasoning, was conducted in the form
of individual task-based clinical interviews, in which a researcher probed a participant’s prob-
lem solving with unfamiliar artifacts (Abrahamson & Cendak, 2006). Preliminary data analysis
revealed several instances of metaphor, yet that finding appeared insignificant at the time because
only 3 of the 28 individual participants produced a total of just 4 metaphors in over 26 hours
of data. Only recently have we returned to these rare occasions to investigate the function of
metaphor in mathematics education. Herein, we present and demonstrate an emerging interpreta-
tion of the discursive function of metaphor. That said, our scarce data delimit the generalizability
of this thesis. Our theoretical rationale is as follows.

Quantitative reasoning evolves in individuals in the form of goal-oriented schematic cognitive
structures (Piaget, 1968). Yet this evolution necessarily nurtures from the social context (Roth,
2001), wherein individuals engage cultural artifacts as means of participation in disciplinary
practice (Newman, Griffin, & Cole, 1989; Sfard, 2007; Vygotsky, 1934/1962). Teachers are insti-
tutionally designated social agents charged with promoting students’ development. They do so by
shaping students’ attention toward and interaction with situations under joint inquiry (Bartolini
Bussi & Mariotti, 2008; Goodwin, 1994; Stevens & Hall, 1998). Students, in turn, utilize a
variety of personal resources to accomplish curricular tasks. Metaphor, in particular, has been
implicated as conducive to meaningful engagement in mathematical tasks (e.g., Lakoff & Núñez
2000; Presmeg, 1986, 1992, 1998). Focusing on metaphor, we propose to highlight its inherently
discursive motivation and function. Specifically, we propose that instructors and students utilize
metaphor as a discursive means of striving to create or amend shared views, meanings, and uses
of artifacts in mathematics learning environments. Mathematics teachers and students, like poets,
use metaphor as one means of getting other people to see things their way.

This study may bear implications for policy debates concerning the design and imple-
mentation of mathematics-learning materials, activities, and pedagogical supports (“The math
wars,” Schoenfeld, 2004). Specifically, validation of our thesis concerning the pedagogical util-
ity of metaphor could encourage teachers to cultivate socio-mathematical norms of classroom
discourse that embrace and even elicit metaphorical contributions (cf. Ball, 1993; Cobb &
Bauersfeld, 1995). More broadly, research on the nature and function of imagery is relevant to
debates over the nature of reasoning—whether it is essentially amodal (propositional) or modal
(compare Barsalou, 2008; to Dove, 2009; Fodor, 1980; Thagard, 2010; Wilson, 2002).
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IDIOSYNCRATIC METAPHOR 57

Research on metaphor in mathematics discourse is related to a larger literature on imagery
in mathematics sense-making and reasoning. Whereas it is beyond the scope of this article to
survey this vast literature, a brief overview will enable us to hone our thesis.

Imagery and Metaphorical Reasoning in Mathematics Problem Solving

Presmeg (1992) argues for the essential role of visualization in mathematics problem solving.
So doing, she weaves together a framework built on her own empirical findings as well as the
epistemological philosophy of Immanuel Kant, the cognitive–developmental theories of Jean
Piaget and Bärbel Inhelder, and the cognitive linguistics theory of Mark Johnson and George
Lakoff. This section presents key constructs from this synergistic perspective so as to position
our thesis in the literature.

Individuals’ mathematics reasoning engages multimodal dynamical images that are visual,
auditory, and kinesthetic perceptions from their experiences. Yet it is not the rich images
themselves that serve in mathematics reasoning but rather impoverished traces of these actu-
ally experienced images. These traces—cognitive structures called pattern images or image
schemas—essentialize the source perceptions into their common distinctive attributes, such as
recurring spatial configurations and dynamical relations among their elements. As such, the
schemas can organize experientially disparate phenomena systematically into clusters, which
inform the organism’s contextual functioning by lending potentiality of meaning and response
(see also diSessa, 1983, 1993).

In terms of their apparent concreteness, image schemas are theorized as positioned in between
situations and concepts. As such, image schemas play bilateral bridging roles between situations
and concepts: through the cognitive mediation of image schemas, problem solvers both evoke
candidate conceptual knowledge and apply it to novel situations they are trying to make sense
of (i.e., to model, generalize, mathematize). Accordingly, Presmeg (1986, 1992) identifies two
reciprocal functions of image schemas: concretizing the abstract and essentializing the concrete.
For example, image schemas enable a person who is engaged in making sense of a problem
situation to consider interpreting the situation as a “case of” by filtering out irrelevant con-
textual details of the sensorial percept (cf. van den Heuvel-Panhuizen, 2003). Here one might
note that image schemas are not static cerebral structures but emergent sense-making procedures
(Glenberg, 1997; Roediger & McDermott, 1993). Moreover, these schemas have been implicated
as embodied: “[T]hat of which we think emerges from and in . . . [perceptuo-motor] activities
themselves” (Nemirovsky, 2003, p. 109; see also Rotman, 2000).

Image schemas vary along several dimensions relevant to the study of mathematics learn-
ing. Whereas the schemas may be canonical, such as balance images of algebraic equations,
other images, such as viewing a graph’s x-axis as the horizon, may be idiosyncratic. Also, the
evocation of image schemas may serve either “reproductive” (mnemonic) or “productive” (cre-
ative) purposes of mathematical reasoning. Finally, Presmeg implicates analogical reasoning as
the cognitive means of applying images to particular situations, and metaphor as the linguis-
tic embodiment of analogy. In sum, “The power of metaphor lies in its use in making sense of
new conceptions in terms of already existing conceptions—thus in ‘building new conceptions’”
(Presmeg, 1998, p. 29, see also Fauconnier & Turner, 2002; Sfard, 1994). To support her views,
Presmeg (1986, 1992, 1998) presents empirical data of students citing metaphor-based heuristics
in solving mathematical problems or interpreting mathematical artifacts.
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58 ABRAHAMSON, GUTIÉRREZ, AND BADDORF

Implicit to Presmeg’s examples of students’ idiosyncratic metaphorical images is an apparent
assumption that her study participants had previously evoked these very images to reason about
the same particular mathematics subject matter, possibly through prior application to contextually
similar situations. We thus remain with the question as to how and why mathematics students first
metaphorize images. This research question is thematic to mathematics-education research on the
“birth of metaphor” (Sfard, 1994) or “sprouting of signs” (Radford, 2003), which are significant
moments in the ontogenesis of mathematical concepts (Abrahamson, 2004).

Taking on the question of how metaphors are first articulated, we will be inquiring into a set
of empirical episodes to evaluate the following conjecture.

When mathematics students attempt to make sense of new phenomena—situations they are expected
to interpret and proposed artifacts for doing so—they try to determine what these phenomena are
like, what they are analogous to. In this sense-making process, students recall familiar phenomena.
To communicate their insight—how they are seeing the phenomena—students use metaphor.

As our data examples will demonstrate, mathematical reasoning may demand creative analog-
ical construction. In cases of joint inquiry, metaphor serves as a “frame” (Fillmore, 1976) for
orienting the interlocutor’s view toward the problem situation (Stevens & Hall, 1998). Metaphor
can thus be understood as an internally available means of objectifying emergent understanding.
We thus also wish to complement previous suggestions by which mathematical learning is the
semiotic appropriation of externally available artifacts (cf. Abrahamson, 2009b; Radford, 2003;
Sfard, 2002).

METHODOLOGY

The original project whose data we are investigating in this post hoc study was conducted
in the design-based research (DBR) approach (Cobb, Confrey, diSessa, Lehrer, & Schauble,
2003). Reports on DBR studies often do not achieve satisfactory coherence among theoretical
perspectives, instructional design, and a posteriori analysis (Abrahamson & Wilensky, 2007;
Artigue, Cerulli, Haspekian, & Maracci, 2009; Kelly, 2004; Puntambekar & Sandoval, 2009;
Ruthven, Laborde, Leach, & Tiberghien, 2009). We attempt to achieve such coherence as fol-
lows: (a) our post-hoc analytic attention to the multimodality of discourse in our empirical data
resonates with the epistemological commitments underlying our embodied-design framework
(Abrahamson, 2009d); and (b) probability is a suitable content domain for the study of mul-
timodal reasoning, because the challenges of expressing randomness numerically may impel
students to resort to alternative discursive genres such as metaphor (Rubin & Hammerman,
2007).

An appeal of the DBR approach is that students’ metaphorical reasoning was captured as
they were possibly first constructing a new idea (in contrast with experimental design explicitly
engineered to elicit student metaphor, e.g., through a survey, see Groth & Bergner, 2005; cf.
Rubin & Hammerman, 2007). A tradeoff of our study’s ecological authenticity, however, is the
scarcity of relevant data. We partially address the consequent lack of statistical power with in-
depth qualitative analyses.

The data excerpts cited next are from interviews with three 11-year-old students from a pri-
vate suburban school. The context of these interviews was a DBR study of late-elementary and
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IDIOSYNCRATIC METAPHOR 59

middle-school students’ intuitive probabilistic reasoning. We also evaluated the potential roles
that various technology of our design could play in enabling students to coordinate intuitive and
mathematical formulations of the focal situations (Abrahamson & Cendak, 2006). Using a flex-
ible protocol, the first author and a research assistant engaged each participant in a task-based
semistructured clinical interview (diSessa, 2007; Ginsburg, 1997; Goldin, 2000). The sessions
were videotaped for subsequent analysis, and selected episodes were transcribed. The research
team employed collaborative microgenetic analysis techniques (Schoenfeld, Smith, & Arcavi,
1991; Siegler & Crowley, 1991) as well as the grounded-theory approach (Glaser & Strauss,
1967), through which behavioral patterns were identified (diSessa & Cobb, 2004) and iteratively
crosschecked and developed vis-à-vis the entire data corpus.

A methodological challenge we encountered in analyzing the video data was the liability that
the interviewer–researcher (the first author) revise history by introspectively ascribing to himself
thoughts he had not in fact entertained during the interview several years prior. Our field notes
and minutes from our daily electronic communications during the data collection proved helpful
in addressing this challenge. Wherever doubt still remained, we either omitted the interpretation
or qualified it.

Figure 1 depicts the design’s focal artifacts. The marbles scooper is used to draw exactly four
marbles from an urn of mixed green and blue marbles (see Figure 1a).2 We ask the study par-
ticipant to guess, “What will happen when we scoop?” (see Abrahamson, 2009c, for dimensions
of deliberate ambiguity in this prompt). Next, the participant is guided to use crayons as well

a. b. c. d.

FIGURE 1 Materials used in the study—experimental and analytic
embodiments of the 2-by-2 mathematical object: (a) the marbles scooper;
(b) a template for performing combinatorial analysis; (c) the combinations
tower—a distributed sample space of the marbles-scooping experiment;
and (d) an actual experimental outcome distribution produced by a
computer-based simulation of this probability experiment. (Color figures
available online.)

2Viewed in “slow motion,” the experiment is revealed to be not binomial but hypergeometric. That is, when the first
marble is scooped, the urn has one less of that marble’s color to be scooped into the remaining three concavities, so that
the experiment is strictly a case of “without replacement.” Nevertheless, the experiment can be viewed as functionally
approximating the binomial due to the minute ratio of the sample size (four marbles) to the content of the urn (hundreds
of marbles).
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60 ABRAHAMSON, GUTIÉRREZ, AND BADDORF

as a pile of stock-paper cards each bearing a blank 2-by-2 matrix (Figure 1b) so as to create
the sample space of the experiment and assemble it in the form of the combinations tower (see
Figure 1c). Later, the interview moves to computer-based simulations of the same experiment
(e.g., see Figure 1d).

Elsewhere, we furnish detailed explanation of the design motivation and rationale and report
on findings and design modifications throughout the iterated study cycles (Abrahamson, 2009a,
2009b, 2009d; Abrahamson & Cendak, 2006; Abrahamson & Wilensky, 2007; Abrahamson,
Janusz, & Wilensky, 2006). In the current retrospective study, we seek to focus on instances
of metaphorical reasoning so as to understand their emergence and evaluate their function
and effect within instructional situations. So doing, we are evaluating a conjecture regarding
the pedagogical role of metaphor: participants in mathematics instruction—both teachers and
students—generate metaphors as discursive means of concretizing their perceptions of activ-
ity elements, including problem situations, disciplinary and pedagogical artifacts, and solutions
procedures.

RESULTS AND DISCUSSION

We are evaluating the conjecture that spontaneous metaphor plays an important function in fos-
tering mathematics learning. Specifically, the discursive form of metaphor enables participants
in mathematical conversations to shape mutual views of phenomena, such as situations, objects,
and artifacts, by going beyond naming what they are seeing to communicating how they are
seeing it. So doing, we maintain, participants promote their own learning: (a) directly, through
articulating and refining mathematical assertions; and, (b) indirectly, by creating opportunity for
formative assessment that is uniquely attuned to their idiosyncratically evolving schemas for the
mathematical subject matter.

In this section, we present and discuss empirical data exemplifying spontaneous metaphor
in conversations around task-based instructional activities that were designed to promote mathe-
matics learning. The three episodes, each from an interview with a different student, span a range
of conceptual issues targeted along the interview protocol. Perhaps coincidentally, the episodes
thus became ordered also with respect to the apparent elaborateness of the metaphor. In all three
episodes, we argue, members of the dyad used metaphor to get the other person to see things their
way, where the “things” will be ambiguous mathematical artifacts. Following the presentation of
all three episodes, we offer summative comparison across the episodes. We then conclude the
article with evaluative remarks concerning the function of spontaneous idiosyncratic metaphor
in mathematics education. (Video clips of all three episodes can be viewed here: http://edrl.
berkeley.edu/publications/journals/MTL/Abrahamson-MTL/.)

Serpentine Combinatorial Analysis: Challenges of Generalizing
Contextual Metaphor

We join Jake (pseudonym), an 11-year-old and reportedly “low-achieving” male student, and the
researcher at a point along the interview protocol where Jake is attempting to color in the cards
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IDIOSYNCRATIC METAPHOR 61

a)

b)

c)

d)

e)

f)

FIGURE 2 Selected phases in Jake’s guided combinatorial analysis of
the three-blue combination (Figures 2a–2d) and the two-blue combination
(Figure 2e, 2f). The darker line on top of each card was designed as a
means of supporting the analysis by making rotations distinct.

so as to show “what we can get when we scoop.” Prior to this episode, Jake had created four
of the six possible permutations on the two-green-and-two-blue combination (hence “2g2b”).
Currently, Jake is working on the one-green-and-three-blue combination (hence “1g3b”) and has
so far created two of four permutations (see Figure 2, where we use white-and-grey instead of
green-and-blue, respectively, for print clarity).3

Jake: <00:24:44> I think, mayb– . . . [intently gazing at the two cards] /4 sec/ Well, they’re
like L-shaped, and I don’t think you can get any more L-sh. . . . Actually! . . . Yeah,
you can’t get anymore L-shapes. Oh wait, yeah you can, you can [lifts crayons,
completes a third card; now three cards lie in a row before him (see Figure 2b)]
/11 sec/ . . . . Uhm. . . . /29 sec/ [gazes at the three cards, rearranges them on the

3For discussions of research on students’ challenges and possible trajectories in learning to perform combinational
analysis, see Batanero, Navarro–Pelayo, and Godino (1997), English (2005), and Sriraman and English (2004).
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62 ABRAHAMSON, GUTIÉRREZ, AND BADDORF

desk (see Figure 2c); with his right hand (RH) index finger, Jake gestures curves above
each card] . . . That’s it.

Dor: Ok, and how would you prove that that’s it? Is there a way? [. . .]
Jake: Well, they’re all L-shaped, and well I kinda like made, kinda like a pattern like, it’s like

a snake, it’s going “dun dun dun” [each “dun” is accompanied by pointing at one of
the three darker cells in the L figure, in the left-most card], and then it’s going swivel
around, and like that [RH index glides over the cards in a curved meandering motion,
highlighting the L figures in each of the three cards; the motion appears to follow a
continuous line, such that the end of each L roughly connects or skips to the beginning
of the L in the next card].

Jake used an L-shaped configuration as a material anchor for a conceptual blend (Hutchins,
2005)—he blended a snake schema into a specific L-shaped concatenation of three contigu-
ous spatial elements. Moreover, Jake “elaborates the blend” by importing into the semantically
impoverished L-shape dynamical behavioral properties typical of the more semantically rich
snakes (see Gentner, 2001). He introduces the snake as a simile (“it’s like a snake”) and then,
implicitly, as a metaphor (“it’s going . . .”). The snake blend animates the static L-shape, mobi-
lizing it to move snake-like. So doing, Jake interprets the several spatially contiguous cards lying
on the desk as though they inscribed a picture story advancing from left to right. That is, Jake sees
the three frames as each depicting the snake’s location in temporally consecutive instances. And
yet, whereas Jake ran his blend in an aesthetically appealing pattern, this run was insufficiently
systematic as a combinatorial-analysis strategy, because Jake could not determine whether he
had exhausted all the possible snake positions in the card template. In particular, whereas Jake’s
snake swivels, it is not clear how careful Jake was in monitoring the snake’s progress along each
and every discrete rotation (see in Figure 2c how the first shift, from the left-most card to the
middle card, skips a rotation).4

The interviewer (Dor), who sees that Jake has created only three of the four 1g3b permuta-
tions, nevertheless recognizes semiotic potential in the snakeness Jake has just blended into the
cards. Specifically, Dor recognizes that the blend could support Jake in coloring in the cards in
a way that would support the didactical objective of students experiencing and appreciating the
utility of a systematic approach to combinatorial analysis. Dor’s diagnosis was that Jake was
not equipped to notice inconsistency in the snake’s progress from one frame to the next. Dor
thus wishes to introduce rigor into Jake’s own blend in a way that would enable Jake to find the
fourth permutation (the missing rotation)—Jake would thus succeed both locally in completing
the analysis of the 1g3b combination and, more generally, in experiencing the systematicity of
combinatorial analysis. In order to introduce rigor into Jake’s strategy, Dor is about to highlight
for Jake a unique figural element within each L-shape—the middle of the three squares; Dor will
code this square as the “corner” (see Goodwin, 1994, on “highlighting” and “coding” in experts’
mediation of professional vision; see Mariotti, 2009, on “focalizing”). Dor hopes that Jake will

4Jake’s modest discovery faintly echoes Friedrich August Kekulé von Stradonitz’s momentous metaphor-based dis-
covery of benzene’s ring-shaped structure. Kekulé apparently dreamed of a snake swallowing its own tail (Benfey, 1958).
In Abrahamson, Wilensky, and Janusz (2006) we discuss a case of middle-school students inventing similar figural strate-
gies to analyze a 3-by-3 green/blue table. Although they discovered many of the 512 possibilities, the students ultimately
abandoned the strategy, because they had no clear criteria for determining whether they had exhausted the sample space.
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IDIOSYNCRATIC METAPHOR 63

thus be better able to notice that the swiveling L had skipped a rotation. As we shall see, however,
manipulating perception can be difficult, precisely because students do not know the didactical
objective of an instructional action.

Dor: So where is the corner of the snake?
Jake: Corner of the snake? What do you mean corner of the snake?
Dor: [LH thumb and index make an L icon] It’s like a, it’s like an L.
Jake: [simultaneously] Yeah, it’s L-shaped.
Dor: Where is the corner of the L? [Jake points to the corner of the L on the first card and

then looks at Dor] There.
Jake: Yeah.
Dor: Where’s the. . . . Where is it next? [Jake indexes the L’s corner on the next card]

There [Jake indexes the corner on the third card] and here. Now, as it moves [points
with pen]—as it twists [pen curves over the L]—look, the corner is here. . . .

Jake: Oh, wait. There should be four. [reaches for another card and colors it in] /20 sec/
[completes coloring in the card (see Figure 2d) and puts the crayon down] Ok. /2 sec/
So, now I know there’s no more, uhm, 1-greens cause the corner’s in all places [touches
the corners in each of the four cards].

Thus, Jake and Dor co-created a locally effective combinatorial-analysis strategy—Jake saw a
swiveling snake, and Dor tamed it so that it visits all rotations. Particularly aligned with the didac-
tical goal is Jake’s assertion that he now knows he has exhausted the local analysis. However,
might this metaphor become a useful and generalized reasoning tool? That is, Jake may well
regard the snake metaphor as a local strategy to solve just one part (1g3b) of the problem, a
strategy that does not necessarily generalize to other parts. Can Jake apply this improved blend
to a different context, such as the 2g2b set? Although a two-squared snake in the 2g2b set is
not L-shaped, it might still be envisaged as swiveling around the card and thus support Jake’s
combinatorial analysis of 2g2b. Will Jake transfer the swivel strategy from 3-celled figures to
2-celled perceptual variants? To begin with, could Jake see a 2-celled concatenation as a snake at
all, or will the snake analogy prove too “brittle” (Clement, Brown, & Zietsman, 1989)? If so, how
might Dor intervene so as to support Jake in re-evoking the serpentine combinatorial analysis?

Several minutes later, Jake is attending to the 2g2b set. With Dor’s organizational sup-
port, Jake has created four of the six possible cards, including the two X-shaped patterns (see
Figure 2e). As we shall see, Jake appears to believe there are only four cards in the 2g2b set, pos-
sibly because there were only four cards in each of the previous two sets he had created (1g3b and
3g1b, see below). Accordingly, when Dor prompted Jake to search for more permutations, Jake
attempted to rationalize his work as complete. Jake began by referring to the cards’ symmetry as
supporting his position.

Jake: <00:28:50> I kind of [inaudible], like, kind of like diagonal-wise, and they’re on both
sides [each hand gestures to one of the X-shaped patterns].

Dor: Ok, so you feel you’ve done the diagonals.//
Jake: //Yeah, and also, I did, I did it on each half [each hand gestures to one of the two other

cards (see Figure 2e)]
Dor: Ok.
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64 ABRAHAMSON, GUTIÉRREZ, AND BADDORF

Jake: Yeah, so . . . /2 sec/ um, so I don’t really think there’s anything left. Also, there’s four
spaces [four cells in an un-colored card template], and there’s four of these [gesturing
to the four cards].

At this point, Jake believed he had exhausted the 2g2b group. His final assertion was that there
are four cells in the card, and that he had discovered four permutations. Enter snake.

Dor: Ok, so, so, let me, uhm [brief chuckle] remind you of th–, of your own kind of think-
ing. So there seems like, there, you have two tricks here. One is doing it like . . . uh
[RH makes a flip-flop “symmetry” gesture], the uh, sort of [Jake keeps interpolating
“yeah”] . . . yeah ok, but once you find a certain, a certain thingy, a certain configura-
tion or whatever, then you do the mirror image or flip image or whatever you want. . . .

So you did the same here—these are kind of flip images of each other [rearranges set
of four 2g2b cards to twin each card with its mirror image (Figure 2e depicts the even-
tual order)]. But then there was another thing you did here [indicates the stack of 1g3b
cards treated earlier], which you haven’t done here [indicates the 2g2b cards], and
that was the idea of the going [RH gyrates clockwise at wrist, grip fixed, “opening a
jar”] . . . of the snake going around.

Jake: Oh, yeah! [sits up]//
Dor: // . . .which is kind of different.
Jake: Uhm . . ./15 sec/ [rearranges the cards on the desk several times] well, but the cor-

ner. . . . No. Yeah. No. There’s two of them. /4 sec/ I can’t do the snake thing, cause
there’s no corner, cause there’s two of them.

Dor: Ok, so how about a short snake [laughs].
Jake: Um . . . /13 sec/ I don’t know if the corner would be on this side or this side, though

[gesturing toward two adjacent blue cells, indicates one, then the other].
Dor: Ok, so let’s just think of this idea of, of rotating around the center [RH performs the

jar-opening gesture] cause that’s essentially what you were doing here [indicates the
1g3b stack]. You were saying that the L is sort of rotating [bends RH index to make
an L-shape, then rotates the L] around this middle point [of the card; RH index beats
card center four times].

Jake: Yeah.//
Dor: //And we know we found . . .

Jake: //Oh!!! . . . [abruptly sits up] Oh! So the green’s kind of like switching around
[focusing on a 2g2b card with adjacent green cells, RH index and middle finger form
a fixed co-pointing pair that then rotates 90 degrees around the center, thus represent-
ing the rotation that had been missing between the two symmetrical permutations, see
Figure 2e], but these are just kinda different, so the green would be . . . ha! . . . [takes
a card from the stack and colors it in].

Dor: Bingo . . . /8 sec/ [Jake takes another card from the stack and fills it in (see Figure 2f)]
Ok.

Jake: Now I think I have them.
Dor: Yeah.
Jake: Ok!
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IDIOSYNCRATIC METAPHOR 65

Jake’s difficulty in transferring a strategy he had learned for the 1g3b set over to the 2g2b set,
it appears, was due to overprominence of the “corner” perceptual feature in this strategy—a
2-green snake has no corner, and so there was no figural cue in the 2-green concatenation to
alert that it, too, affords swiveling from one permutation to the next, as the 1g3b L-shaped snake
had done. Only once the focus shifted from the snake’s “corner” to the card’s “middle point,” it
appears, could Jake see the two squares anew (“a short snake”) as affording a variant on swiveling
(“switching”). Had Dor initially established the snake’s “head” rather than its “corner” as the
figural cue, perhaps Jake would have subsequently transferred the snake strategy without Dor’s
considerable support. Moreover, snakes appear to move forward from their head, not their center,
such that preferring the head over the center as the figural cue would have been more compatible
with Jake’s metaphorical blend. However, the “corner” appeared to Dor a useful cue at the time,
because it preempted any ambiguity as to whether a given end-cell were the snake’s “head” or
“tail” (to appreciate this tracking challenge, return to Figure 2c).

In sum, Jake’s episode described a “metaphor breakdown” that a student experienced during a
guided attempt to transfer a perceptual heuristic he himself had devised. Namely, the transfer con-
text did not readily afford for the student an application of his own metaphor, and this application
may have been further hampered by the tutor’s heuristical elaboration of the student’s metaphor
when it was first developed. Ultimately, however, the metaphor-based discourse appears to have
been pedagogically useful because it enabled the tutor to steer the student toward the didactical
objective (notions of systematicity and rigor that are requisite features of combinatorial analysis).

The utility of metaphorizing an idiosyncratic image schema in a local context thus does not
guarantee its transferability to conceptually proximate contexts (see also Clement, Brown, &
Zietsman, 1989). Yet students cannot anticipate the prospective utility and generalizability of a
locally effective informal metaphor of their own design, simply because they are not yet privy
to the conceptual field in which they are operating. The teacher, who attempts to guide students’
re-invention of powerful mathematical schemes, can intervene by “tuning” students’ own image
schemas in accord with the didactical goals. This “tuning” is accomplished through discursive
actions referring selectively to the images’ structural dimensions. From the vantage point of
disciplinary expertise (or, at least, from the vantage point of pedagogical content knowledge),
the teacher deemphasizes the image’s local properties that hinder contextual generalization and
emphasizes its didactically critical, transferable properties.

I’m Just a Machine: An Epistemic Metaphor Isolates Chance and Cognition

We now turn to the case of Sima, an 11-year-old high-achieving female student. She and the
interviewer (Dor) are at a point along the interview protocol where they have completed the
construction of the combinations tower (see Figure 1c) and are currently examining its relations
to the marbles-scooping experiment.

Sima and Dor have been discussing the meaning of the sample space with respect to
experimental outcome frequencies. So doing, they have been making headway in naming and
distinguishing two different views of the sample space: either as 16 equiprobable elemental-event
specimens or as 5 heteroprobable aggregate-event sets. And yet, it appears, the interlocutors are
encountering difficulty in agreeing on the referents of their utterances. More precisely, whereas
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66 ABRAHAMSON, GUTIÉRREZ, AND BADDORF

they agree on which objective things they are referring to, they tacitly differ on how they are
seeing these objects and, therefore, on what these objects are. We now elaborate.

Dor and Sima bear different default ways of seeing each of the individual cards; for example,
the 1g3b card with green in the top-right cell. When Dor looks at this card, he sees by default 1 of
16 elemental events with a unique spatial configuration and a 1/16 chance of random selection,
whereas Sima by default does not attend to the card’s particular green–blue configuration and
so she sees an aggregate event with a 4/16 chance. Sima is not necessarily making a conscious
decision to ignore the order of green and blue—she is well able to switch to Dor’s view, but
whenever she is not prompted to see it his way, she sees it her way. When the tacit disagreement
is irrelevant to the conversation, the conversation flows, but whenever the meaning of the card is
pertinent, the conversation goes awry or even breaks down.5

During the interview itself, however—several years before this analysis was proposed—Dor
interpreted the confusion not as a deep cognitive phenomenon but as a superficial semantic issue
to be settled before any substantive mathematical conversation could take place. Improvising,
Dor chose for each of the 16 cards human names, such as “Joe” and “Carol,” and assigned them
to five families. Dor’s intention was to shift the discourse into an amathematical domain, as a
means of drawing on Sima’s informal understanding that objects can be viewed alternatively
either as unique or as members of a category. Moreover, Dor initiated a new activity: he flipped
all of the cards over, so that their blank side showed, and suggested marking the cards with the
16 letters A through P. Dor further evoked a hypothetical scenario involving a third person who
happened to walk in on the interview; finding all 16 cards labeled A through P, this person would
not be told that the cards bore color patterns on the concealed side. What might this person think
about the relative chances of randomly drawing either the K or D card out of these 16 cards?

Sima responded that as “letters”, the 16 cards would have equal chances of being selected, but
that if they were flipped, these very same cards would have different chances of being selected,
in accord with their color pattern “families,” and irrespective of their “first names.” But, then
Sima said that even as A-through-P alphabetical characters, the cards have different chances, for
example K-cum-Joe, a 2g2b family member, would have a better chance than D-cum-Carol, a
3g1b.

Dor: <00:49:32> So I have 16 cards, and I mix them up randomly, and you think that “K”
has a better chance of coming up than “D?”

Sima: Ahuh [affirmative nod]
Dor: Huhhh /5 sec/

Sima: But when you’re talking about K and D—no, because K and D are both just 1-out-
of-16. But when you’re talking about Joe and Carol—and not K and D—they are
“2 green, 2 blue,” “3-green, 1 blue.”

Sima has expressed what appears to be a paradox—that one’s chances of randomly selecting a
particular card depend on whether one knows to which subgroup in the combinatorial space the
card belongs.

5It is as though Sima and Dor are both staring at Jastrow’s proverbial duck–rabbit ambiguous image and arguing not
over what it is but whether this thing should be fed carrots or fish (Abrahamson et al., 2009; Rowland, 1999). See also
Newman, Griffin, and Cole (1989) on the enabling “looseness” in a novice and expert’s joint attention to objects used for
the enactment of disciplinary cultural practice.
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IDIOSYNCRATIC METAPHOR 67

Perplexed, Dor seeks a means of disengaging Sima from the aggregate view. He evokes a
brainless random device—a mechanical grabber-hand that slides at a height then descends toward
the card pile and picks out any one card:

Dor: But what if I’m just a machine. . . . I don’t know what they’re called. . . . I’m
just a machine—my job is to come and, “Ehhhhh.” [eyes dimmed, mimes and
ventriloquizes a device blindly selecting from the cards]

Sima: Then it would just be . . . then K and D don’t have. . . . Then K and D are just two . . .

one . . . they’re just . . . they’re equal. Equivalent.
Dor: [flipping over all sixteen cards to reveal colors] And if. . . . And if they’re this side . . .

this way, and I’m still. . . . I’m just a machine, and I come, “Ehhhhh” . . . just picking
one randomly . . . . Does . . . Does Joe or Carol have a better chance? /2 sec/ I’m just
a machine . . . .

Sima: I guess not.
Dor: Huh!

Sima: /2 sec/ When you’re just talking about independent little cards.
Dor: Independent little cards.

Sima: Yeah, and they have their own I.D.
Dor: Their own I.D.

Sima: Not talking about families—yeah!
Dor: Huh!

Sima: There is no difference.
Dor: Ok.

Sima: They’re equivalent.
Dor: There seems like there’s this tension, where we’re working back and forth between

these things. As individual “people cards” you say they have the same chance . . . .
Sima: [nods affirmatively] Um’hhmm . . . .

Dor: . . . but as members of families . . . so some families have a better chance.
Sima: Yeah [nods affirmatively].

Dor: Can you live with both things? Because we’ll have to move back and forth between
them.

Sima: Yeah [nods affirmatively].

In sum, this episode described Sima and Dor’s struggle to achieve consensus over the meaning
of the cards on the desk. The interpretive disagreement between the interviewer and student, it
thus appears, was not only semantic but touched on the deep conceptual issues: Sima does not
see order by default, because she does not see different permutations as actual discernible things
in the environment (e.g., Bamberger, 1999).

Moreover, the cards were designed as a pedagogical support for students to understand the
experiment’s sample space, yet surreptitiously the set of 16 cards became a secondary sam-
pling space—an open urn of sorts lying flat on the desk and containing 16 objects from which
to draw (a mathematical commensurability for a p = .5 approximated binomial). Managing
the card collective’s shifting role as either sample space or sampling space can be confusing,
moreover coordinating this shifting view with an interlocutor. One is consequently liable, as
Sima, to state that two cards, a 2g2b and a 3g1b, compare alternatively as equiprobable or
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68 ABRAHAMSON, GUTIÉRREZ, AND BADDORF

heteroprobable: they are equiprobable as two independent material objects placed in a sampling
space but heteroprobable as two naïve views of the marbles experiment.

The machine metaphor appears to have addressed a tacit interpretive conflation bearing sig-
nificant conceptual repercussions. Namely, by stating, “I’m just a machine,” the interviewer
compartmentalized two aspects of his agency in the random experiment: (1) the physical action
of randomly selecting one of the cards viewed as elemental events; and (2) the mental action of
mathematically inferring the expected frequency of the cards viewed as aggregate events. The
blind machine—Dor’s dummy—could not see cards as aggregate events, so that in the machine
context the cards were temporarily denuded of their primary-experiment signification and ren-
dered meaningless objects of equivalent neutrality. As such, this episode has demonstrated a
spontaneous idiosyncratic epistemic metaphor that analogized the random process itself. Sima,
by temporarily adopting the fictitious machine’s point of view, came to see things as Dor saw
them.

A Storm in a Teacup is But a Drop in the Ocean: An Idiosyncratic
Metaphor Serves as a Discursive “Lemma” for Building an Elaborate
View of a Mathematical Artifact

Our final case involves Li, an 11-year-old high-achieving male student. Li and Dor are at a
point along the interview protocol where they have already constructed the combinations tower
and have discussed its relations to the marbles-scooping experiment (see Abrahamson, 2009b,
for analysis of the earlier part of the Li interview). Now Li and Dor have begun working
on a computer-based experiment that generates histograms such as in Figure 1d (to interact
with an applet of this simulation, visit here: http://ccl.northwestern.edu/netlogo/models/run.
cgi?4Blocks). Dor has just introduced the computer model as constituting a simulation of the
marbles experiment by highlighting general correspondences between the real and simulated
settings.

Idiosyncratic metaphors as personally available semiotic means of objectification

In explaining the simulation to Li, Dor took several virtual samples one by one (“Go Once”),
each time pointing out a change in the histogram that recorded the outcome. Dor’s explana-
tion focused on the five columns in the virtual histogram and in particular on how they “grow”
vertically. Satisfied that Li had understood the analogy between the physical and simulated exper-
iments, Dor is now about to guide Li to monitor an experiment that rapidly selects thousands of
random samples one-by-one. (The bold font is meant to enable the reader to selectively attend
only to verbal utterance).

Dor: <00:51:30>So what do you think might be the shape of the columns, as it goes
up?

Li: [Gesturing to the combinations tower on the desk] Something like this.
Dor: Well, let’s see.

Dor activates the experiment. As it is running, he explains how the histogram on the computer
screen keeps adjusting its maximal y-axis value so as to accommodate the columns’ vertical
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IDIOSYNCRATIC METAPHOR 69

growth. Namely, when the columns extend up all the way to the top of the histogram window, the
ordinate recalibrates the y-axis scale values so as to accommodate this growth. What one sees is
that the tallest column remains “glued” to the top frame, while the other columns adjust accord-
ingly. These adjustments often entail some of the other columns sagging down, as though they
have “lost” samples. This “autoplot” function is an elegant technical solution used in many sim-
ulations built in the NetLogo computer-based modeling-and-simulation environment (Wilensky,
1999), and yet the elegance appears to trade off with some initial familiarization.

Dor: So what’s happening?
Li: It’s [the distribution] hovering at around this [gestures again to the tower] . . . .

[20 seconds later, when 5,000 samples have been drawn] Look, it’s [the histogram]
almost exactly like this [the combinations tower] . . . . [30 seconds later] Now they’re
[columns] moving less [inaudible].

Dor: Why is it moving less?
Li: /2 sec/ Because . . . /3 sec/ [gazes up to the wall] the larger number . . . /3 sec/

uhh . . . [“checks in” with the interviewer] /2 sec/ [rapidly] Like if you have a little
glass [iconic gesture: LH cups a glass in natural position; gazes at gestured glass] of
water and you drop a marble in [iconic: LH uncups, rises, mimes dropping a marble],
it’s gonna be . . . there’s gonna be, like, a splash [LH, palm up, abrupt vertical rise],
but if you have a big giant lake [LH, palm up, drawn above and behind head to
encircle giant lake; RH, in jacket pocket, budges as if to complete circumference], and
you throw a marble in [LH catapults marble, then scratches nose], there’s just gonna
be a ripple [joins LH thumb and index; lowers hand to chest height on right-side of
embodied space; taps fingers together to mark the marble’s contact with surface, then
inscribes smooth horizontal line across to the left; hand opens]. It’s a, it . . . [deictic
gesture toward the histogram, orients gaze; pivots body towards histogram]

Dor: Oh, ok. Like each individual additional sample [LH gyrates swiftly at wrist to indi-
cate iterated addenda (cf. Abrahamson, 2004, p. 794)] is causing less of a . . . [LH &
RH “contain” the outline of a combinations tower]

Li: [simultaneously] Yeah, it’s like a batting average in baseball. 6 If you’ve already
had 500 at-bats [LH opens, shifts slightly to the left, palm up, “holding” the 500 at-
bats, then relaxes], and then you get out one more time, it’s not going to make
it go down that much—it’ll make it go down like two points [LH pinches thumb
and index as if to reduce quantity, corresponding to the subtraction of two points (cf.
Badets & Pesenti, 2010)—it is the same “pinch” gesture he produced for “ripple”],
or . . . .

Dor: Ok, so as we go along, each successive sample causes less of a commotion.
Li: Yeah. [Gazes back at the computer screen] Look, they’re just barely moving.

6A “batting average” is the ratio of hits (successful batting) to at-bats (opportunities to do so) over a given period
of time. This “average” is usually expressed as a decimal quotient, and it can be updated by adding appropriately to the
numerator and denominator. At the beginning of a season, the “average” changes erratically, but as the season progresses,
it stabilizes.
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70 ABRAHAMSON, GUTIÉRREZ, AND BADDORF

From a mathematical point of view, the conversation pertained to the diminishing propor-
tional effect of single samples on the distribution of actual experimental outcomes. Viewed on
the computer screen, the compressed histogram stabilizes toward the expected 1–4–6–4–1 dis-
tribution, dynamically embodying the law of large numbers. Eventually, the recorded changes
within each column category are smaller than the value represented by a single pixel on the
screen, so that the structure no longer jitters and appears static (albeit the ordinate’s maximum
value is constantly updating, thus revealing that the process remains active).

The transcription supports Dor’s in situ impression that Li intuitively understood the prin-
ciple of diminishing proportional impact. We further see that Li’s limited fluency with rational
numbers and their common linguistic forms did not enable him to communicate his intuition
using normative vocabulary, such as “proportion” and its cognates, as witnessed in his aborted
attempt, “Because the larger number . . . .” In response, Li evoked situations that enabled him to
express his view of the simulation. Expanding on Radford (2003), the metaphors constituted for
Li personally available idiosyncratic semiotic means of objectifying a multimodal image schema.

Metaphor as a discursive lemma for recalibrating interpretive schemes

The previous transcription includes two situations allegedly analogous to the histogram: a
jettisoned marble disrupts a smooth water surface and an at-bat changes a batting average. In both
analogies, some voluntary action results in perturbation to a (material or numerical) aggregation.
Moreover, within each analogy is a differential impact this action has on small versus large
aggregates (albeit the baseball analogy elides explicit reference to the small quantity structure;
see Schegloff, 1996, on the abbreviated inferential form of enthymeme). The logical structure
of the argument within each situated context is of the general form a/b > a/c because b < c.
Namely, the overall impact is greater in the case of a marble in a glass (splash) as compared to the
case of a marble in a lake (ripple); and the impact of a single “out” at-bat on the batting average
is smaller later in the season.

We wish, at this point, to develop the explorative conjecture that Li’s water analogy—and
moreover, his temporary embodied shift away from the artifact to a discursive space wherein he
built this analogy—was spurred by breakdown in his flow of reading the histogram. Li’s tacit
expectation had been that the outcome aggregate would continue growing up in constant spatial
quota—that for every successive sample there would be a constant diagrammatic change—just
as he had witnessed in the first several explanatory samples. However, his actual sensory percep-
tion was of a diminishing and eventually vanishing diagrammatic change. When suddenly faced
with this anomalous behavior, Li lost his “grip on the world” (Merleau-Ponty, 1958/2005)—
his schemes for seeing the experiment through this technologically sophisticated mathematical
artifact lost traction. The analogies he subsequently authored, we maintain, constituted Li’s (suc-
cessful) attempt to amend this felt discrepancy between the expected and the evidenced—the
analogies served as means of accommodating his schemes so as to assimilate the autoplotting
histogram.

Li’s technique for recalibrating his view of the histogram drew on tacit perceptual fluency
with perspectival aspects of imagery. Namely, how might one reconcile the knowledge that a
quantity is growing with the sensory perception that its retinal image is by-and-large constant?
This reconciliation can be achieved by projecting the quantity further away in the visual field.
If the histogram is perceived as receding further away, then we tacitly expect each successive
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IDIOSYNCRATIC METAPHOR 71

accretion of a constant quota to result in a smaller and smaller imprint on the retina. Perceived as
a larger space, say a larger body of water, the compressed histogram once again makes sense to
Li. More precisely, Li once again makes sense of the histogram.

Thus, Li’s imagistic constructions of the glass and the lake are adjusted to natural “visuality”
of these objects (Jay, 1988)—the glass is witnessed at arm’s length, whereas the lake is witnessed
at throwing distance. Accordingly, the overall perturbation looms larger in the case of the glass
(a splash) than in the case of the lake (just a ripple): In the case of the glass, the perturbation is
depicted as a storm in a teacup—a commotion within a confined space, an upheaval in the form
of vertical displacement of water far exceeding the diameter of the containing vessel. This same
local impact, however, is experienced in the case of the lake as but a drop in the ocean—the
lake’s vast expanse mitigates the impact. To wit, whereas the lake is in fact several orders of
magnitude larger than the glass, its perspectival embodiment is gestured as roughly equivalent
(see Figure 3). Moreover, the initial impact of the marble on the lake surface would ironically be
far greater than in the glass, because the marble would have hit the lake surface at a far greater
velocity. Thus, Li regains his maximal grip on the world—he reengages traction on the histogram
by grounding its anomalous behavior in embodied proto-proportional gestalts.

Pragmatics of analogy

In selecting a baseball context for his second analogy, Li evokes a situation that is more
conducive to mathematizing his argument. This analogy is much nearer to the probabil-
ity context—semantically, cultural–semiotically, and arithmetically—than the water-surface

Context 

Effect:
Major
impact

Before Perturb Before Perturb Effect:
Barely

discernable
impact 

Marbles-
Scooping
Experiment 

+1 
sample 

+1
sample

Marble in
Water

“Ripple”

Batting
Average

– – – Batting
average at
500 at-bats

(x/500)

Cup throw
marble

“Splash” Lake throw
marble

One out Batting
average at
501 at-bats

(x/501) 

FIGURE 3 Analogizing the proportional impact of an addend as a func-
tion of the size of the aggregate. Adding a single sample to a small
outcome distribution is like throwing a marble into a glass—you get a
splash. Adding a single sample to a large outcome distribution is like
throwing a marble into a lake—you get just a ripple.
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72 ABRAHAMSON, GUTIÉRREZ, AND BADDORF

analogy. Li thus steers the dialogue beginning from the rich imagistic detour and through pro-
gressive mathematization back to the institutionally normative genre of discussing quantitative
reasoning numerically.

Using numbers as precise signifiers of quantity, in the baseball analogy, Li need not communi-
cate magnitudes gesturally—indeed, comparison of the sweeping “big giant lake” gesture to the
modest “500 at-bats” cupping gesture as well as, analogically, comparison of the lake-impact ges-
ture to the “go down like two points” gesture demonstrate pragmatic contraction in iconicity from
the first to the second context, a contraction typically marking assumed interpersonal coherence
(see Radford, 2008).

Having completed his water and baseball argumentation sequence, Li loops the dyad back to
the phenomenon under scrutiny—“Look, they’re just barely moving.” Presumably, the interlocu-
tors, who renew their joint attention to the histogram, do so with the newly shared professional
vision established in the analogical discursive space. As an aside, perhaps the most interesting
aspect of this conversation between Li and the interviewer is in the unsaid—it is the fact that
Dor understood Li immediately, even though Li’s multimodal marble metaphor was structurally
complex yet multimodally and rapidly delivered. As Núñez, Edwards, and Matos (1999) pro-
pose, such situated intersubjectivity is possible due to the shared biology of the interlocutors’
embodied minds.

Tradeoffs in the design of instructional representations

Embedding sophisticated features into a mathematical artifact may introduce interaction
advantages of great utility to an expert. However, when this artifact is used as a pedagogical
object, the learner needs to unpack the embedded features in order to use the artifact meaning-
fully. We thus implicate the technologically sophisticated self-adjusting histogram as complicit
to enhancing the tension between the tacit and cultural presentation of quantitative informa-
tion. Specifically, by self-adjusting the heights of its columns proportionally, the electronic
histogram’s elegant functionality trades off spatial fidelity for pragmatic representation. Li’s
imagistic analogical detour suggests that he needed to step away from the sophisticated device to
a space where he could construct an imagistic bridge, which in turn enabled him to numerically
objectify his intuitive comparison. Ultimately, the entire image lemma served as a discursive
means to orient Dor’s view of the histogram.

Implicit to the process of mathematization is expressing multimodal images in conventional
inscription. This meta-representational task is cognitively nontrivial (diSessa & Sherin, 2000).
Pedagogical responses to this general design problem, we believe, are in fostering opportunities
for students to customize the negotiation of phenomenological qualia and their cultural recon-
structions (Abrahamson, 2009a, 2009c, 2009d; Clement, 1993). Idiosyncratic metaphor appears
to be one such means.

Comparison of the Three Data Excerpts

We have presented and analyzed three cases in which individuals in an interviewer–student dyad
generated mathematical metaphors to express their idiosyncratic perceptual construction of sit-
uations under joint scrutiny. The artifacts ranged in their mathematical complexity, and thus the
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IDIOSYNCRATIC METAPHOR 73

metaphors ranged both in their structural complexity and the requisite elaborateness of their
intersubjective rendition, from few words and gestures toward the situations to brief narrative
detours that temporarily shifted the interlocutors’ co-attention away from the situations into an
alternative spatial–temporal discursive space.

In all three cases, the dyads assumed metaphorical reasoning as a means of redeploying the
negotiation of mathematical meaning away from contested formal procedures involving imposed
semiotic media over to shared informal experiential contexts wherein intuitive inference can
be applied, articulated, and co-validated. To achieve this discursive shift, the dyads temporarily
relaxed socio-mathematical norms for what constitutes institutionally sanctioned genres and top-
ics (Gomes & Meira, 2006; Walkerdine, 1988). So doing, the dyads implicitly agreed to suspend,
problematize, and query the asymmetrical social capital and hierarchical positioning inherent
to prevalent discourse of mathematics. Namely, counter to prevalent institutional convention,
the dyads endorsed tacit perceptual judgment and inference mechanisms as the epistemological
grounds of disciplinary practice (Polanyi, 1967, p. 21; Varela, 1999, p. 7). In particular, instead
of rehearsing algorithms, the dyads searched for extra-mathematical vantage points from which
unfamiliar mathematical views could be “intimated” (Sfard, 2002) as meaningful. Thus metaphor
enables and forms intersubjective ways of seeing things, of being on the same page.

GENERAL SUMMARY, CONCLUSIONS, AND IMPLICATIONS

We have furnished several examples of a student and an interviewer–researcher who conjured
elaborate metaphors apparently as a means of helping the student make sense of an unfamil-
iar mathematical artifact or manage the performance of a challenging mathematical solution
procedure. We suggested that these metaphors enlist embodied experiences from everyday phe-
nomenology and, so doing, co-opt existing and well-rehearsed mental schemes; these schemes
help learners generate relevant inferences and better manage cognitive resources. The empirical
examples demonstrated both the promise and fragility of spontaneous idiosyncratic metaphor as
a discursive support. More generally, we submit that educational research could ultimately be
more useful to theory building and to practice if researchers more explicitly emphasized and
examined analogies inherent in students’ thinking. We end this article with several conclusions
and implications for the theory and practice of mathematics education.

Roles of Metaphor in Learning, Teaching, and Educational
Research on Mathematics

Metaphors that students and instructors generate apparently spontaneously, as they engage in
learning and teaching mathematical subject matter, are interesting to study, because they appear
to bear unique affordances for students, teachers, and researchers.

For students, metaphors are a powerful discursive technique of building meaning while
making sense of novel situations, including unfamiliar mathematical artifacts.

For teachers, metaphors indicate the processes, and not just the products, of students’ attempts
to understand new ideas; metaphors reveal aspects of students’ reasoning that might otherwise
remain implicit.
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For researchers, metaphors appear to occupy a middle space between, on the one hand, stu-
dents’ situated, informal, imagistic personal experiences and, on the other hand, their deliberate
goal-oriented actions with mathematical objects. By closely observing students as they elicit,
leverage, and metaphorize their personal experiences as means of accomplishing their mathe-
matical investigations, we can gain insight into an apparent epistemological tension between
tacit and formal knowledge and, so doing, we can bring into question some implicit assumptions
about the nature of tacit resources as they relate to mathematical knowledge.

In particular, we echo other researchers and philosophers who argue that experience is far
richer than mathematical knowledge, and that in making sense of mathematical objects students
unpack their experience and look at it in a new way. Specifically, the root of mathematical mean-
ing is in tacit knowledge and informal experiences; students reason analogically so as to operate
in familiar territory where they can make sense of mathematical artifacts, draw inferences, and
build arguments. Yet in order to be able to use their experiences analogically, students may need
to unpack the tacit work of their inaccessible cognitive mechanisms, sometimes in surprising
ways. For example, proportion is built into the perceptual mechanism as a tacitly perspecti-
val experience, so that proportional comparisons can become flattened into direct comparisons
of simulated retinal magnitude. Yet leveraging tacit mechanisms as instruments of mathemati-
cal reasoning requires a supportive environment. Thus, teachers should be sensitive to students’
analogical struggles and be equipped to nurture and guide it. We are thus suggesting pragmatic
connections between the anthropology of instruction (Goodwin, 1994) and of meaning (Radford,
2006), with an emphasis on discourse and mathematical artifacts (Sfard, 2007). That is, people
accomplish conceptual progress by trying to show others how they see things.

Given the explorative nature of this study, these conclusions and the following implications
should be regarded as emerging hypotheses in need of further investigation. With that caveat
in mind, this article makes the following further contributions to research on cognition and
instruction.

Implications for Theory of Learning

Metaphor can accomplish significant work for mathematics students and teachers. We have pro-
posed and demonstrated the plausibility that metaphor, similar to symbols, gesture, and diagrams,
should be theorized as a semiotic means of objectification and thus should be added to the
roster of semiotic means discussed in the semiotic–cultural literature as enabling mathematical
learning, reasoning, and communicating. Moreover, metaphor should be recognized as a unique
means. Although metaphors are ultimately expressed linguistically, in speech, gesture, and in
conjunction with a variety of symbolic displays—all being modalities and semiotic systems that
have already been previously implicated in the literature as offering means of objectification—
metaphors reveal an important function in students’ learning that cuts across these modalities.
Namely, generative analogical reasoning both affords powerful bridging between situations and
their purported models and facilitates the application of new strategies.

By focusing on spontaneous metaphorical constructions, we are in a sense looking not at
contexts that designers parcel a priori into instructional activities students engage but at idiosyn-
cratic contexts that students bring to bear associatively in making ad hoc sense of situations.
It is precisely the idiosyncratic, improvisatory nature of these discursive contributions, we
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conjecture, that make metaphorical reasoning powerful conduits for individuals to negotiate tacit
and mathematical meaning of situations.

Implications for Mathematics Pedagogy

When we think, we always think about some thing in some way. When that thing is new, we
try to make sense of it by figuring out what it is like, how we should see or use it. As we begin
to make sense of new things, it can be difficult to articulate to ourselves or explain to others
how we are seeing the things, moreover when the new things are complicated. For example,
mathematical and techno–scientific phenomena, including situations, instruments, and symbolic
displays, as well as normative solution procedures presented by an instructor as appropriate for
these phenomena, are often difficult to first make sense of and communicate, because under-
standing the phenomena’s disciplinary meanings is contingent on objectifying and interpreting
their implicit inner properties, relations, aspects, patterns, structure, dynamics, rationale, func-
tion, etc. Consequently, we sometimes take advantage of apparently analogous situations that the
new things evoke, and we use metaphor to express these analogies as our way of seeing the things.

In general, mathematics students resort to metaphorical discourse when they evaluate the
formal register either as inaccessible, insufficient, or otherwise inappropriate to express their
emerging logico–quantitative construction of phenomena. By communicating their views explic-
itly in metaphorical propositions, students create opportunities to reflect on their own reasoning
more concretely as well as to receive customized guidance from a teacher who is willing to see
things their way. Similarly, teachers shift formal discourse to metaphorical space when doing so
appears better to enable student insight.

At the same time, informal reasoning has been described as a double-edged sword (Cobb,
1989), and metaphor is no exception. In particular, idiosyncratic fanciful constructions can be
unruly agents in instructional discourse, because they tend to demand more dedicated atten-
tion and individualized scaffolding than either traditional classroom pedagogy or sheer time
limitations are likely to afford (Rick, 2009).

Nevertheless, the constructivist philosophy of learning suggests that idiosyncratic metaphor
is precisely the form of discursive contribution that educational frameworks should accom-
modate, because students draw on diverse epistemic and cognitive resources (Abrahamson,
Berland, Shapiro, Unterman, & Wilensky, 2006; Makar & Rubin, 2009; Turkle & Papert, 1991).
Metaphor should thus be embraced and positioned as a socio-mathematical normative dis-
course genre. Licensing metaphors as valuable discursive contributions may empower teachers
to enable a more diverse body of students to leverage their cognitive funds as means of grounding
mathematical concepts (see diSessa, in Abrahamson, 2006).

Particularly for probabilistic notions involving chance events that are difficult to objectify,
metaphor appears to support students’ sense-making by bridging situations and concepts, that is,
bridging the “epistemological distance” (Morgan, Mariotti, & Maffei, 2009), “rupture” (Radford,
2003), or “cognitive gap” (Herscovics & Linchevski, 1996) between tacit phenomenology of
situations and their explicit cultural reformulation (see also Bamberger & diSessa, 2003).

Operating in the design-based research approach, we have been developing and investigating
pedagogical frameworks for engineering bidirectional bridges across the tacit–cultural interface.
That is, we have been creating and researching instructional solutions that support students’

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 B

er
ke

le
y]

 a
t 0

8:
50

 0
9 

Ja
nu

ar
y 

20
12

 



76 ABRAHAMSON, GUTIÉRREZ, AND BADDORF

personal construction of bridges between unmediated views of problematized situations and
mediated analytical reformulations of these situations (Abrahamson, 2009b; Abrahamson &
Wilensky, 2007).

ACKNOWLEDGEMENTS

This article draws on empirical data collected in a study supported by a National Academy of
Education/Spencer Postdoctoral Fellowship 2005–2006 (Seeing Chance, Abrahamson). A syn-
opsis of the paper focusing on different data was presented at SRTL-6 (Abrahamson, 2009d).
An elaborated treatment of the Li episode has appeared in Abrahamson (2010). We are grateful
to all members of the Embodied Design Research Laboratory at the University of California,
Berkeley (Abrahamson, Director), for generative contention during the microgenetic analysis of
our data. Thanks to Katie Makar, Dani Ben-Zvi, and the MTL editors and anonymous reviewers
of earlier drafts who helped us realize how we see things. The second and third authors, a gradu-
ate student and an undergraduate research apprentice, respectively, made equivalent contributions
to this article—their names are listed in reverse-alphabetical order.

REFERENCES

Abrahamson, D. (2004). Embodied spatial articulation: A gesture perspective on student negotiation between kinesthetic
schemas and epistemic forms in learning mathematics. In D. E. McDougall & J. A. Ross (Eds.), Proceedings of
the Twenty Sixth Annual Meeting of the North American Chapter of the International Group for the Psychology of
Mathematics Education (Vol. 2, pp. 791–797). Toronto, Ontario, Canada: Preney.

Abrahamson, D. (2006). What’s a situation in situated cognition?—A constructionist critique of authentic inquiry
(Symposium). In S. Barab, K. Hay, & D. Hickey (Eds.), Proceedings of the Seventh International Conference of
the Learning Sciences (Vol. 2, pp. 1015–1021). Bloomington, IN: ICLS.

Abrahamson, D. (2009a). Embodied design: Constructing means for constructing meaning. Educational Studies in
Mathematics, 70(1), 27–47.

Abrahamson, D. (2009b). Orchestrating semiotic leaps from tacit to cultural quantitative reasoning—the case of
anticipating experimental outcomes of a quasi-binomial random generator. Cognition and Instruction, 27(3),
175–224.

Abrahamson, D. (2009c). A student’s synthesis of tacit and mathematical knowledge as a researcher’s lens on bridging
learning theory. International Electronic Journal of Mathematics Education, 4(3), 195–226. Retrieved from http://
www.iejme.com/032009/main.htm.

Abrahamson, D. (2009d). Coordinating phenomenologically immediate and semiotically mediated constructions of sta-
tistical distribution. In K. Makar (Ed.), The role of context and evidence in informal inferential reasoning. Proceedings
of the Sixth International Research Forum on Statistical Reasoning, Thinking, and Literacy (SRTL-6). Brisbane,
Australia: The University of Queensland.

Abrahamson, D. (2010). A tempest in a teapot is but a drop in the ocean: Action-objects in analogical mathemati-
cal reasoning. In K. Gomez, L. Lyons, & J. Radinsky (Eds.), Learning in the disciplines: Proceedings of the 9th
International Conference of the Learning Sciences (ICLS 2010) (Vol. 1 [Full Papers], pp. 492–499. Chicago, IL:
International Society of the Learning Sciences.

Abrahamson, D., & Cendak, R. M. (2006). The odds of understanding the Law of Large Numbers: A design for ground-
ing intuitive probability in combinatorial analysis. In J. Novotná, H. Moraová, M. Krátká, & N. Stehlíková (Eds.),
Proceedings of the Thirtieth Conference of the International Group for the Psychology of Mathematics Education
(Vol. 2, pp. 1–8. Charles University, Prague, Czech Republic: PME.

Abrahamson, D., & Wilensky, U. (2007). Learning axes and bridging tools in a technology-based design for statistics.
International Journal of Computers for Mathematical Learning, 12(1), 23–55.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 B

er
ke

le
y]

 a
t 0

8:
50

 0
9 

Ja
nu

ar
y 

20
12

 



IDIOSYNCRATIC METAPHOR 77

Abrahamson, D., Janusz, R., & Wilensky, U. (2006). There once was a 9-Block . . .—A middle-school design for prob-
ability and statistics [Electronic Version]. Journal of Statistics Education, 14(1). Retrieved from http://www.amstat.
org/publications/jse/v14n1/abrahamson.html.

Abrahamson, D., Berland, M. W., Shapiro, R. B., Unterman, J. W., & Wilensky, U. (2006). Leveraging epistemological
diversity through computer-based argumentation in the domain of probability. For the Learning of Mathematics,
26(3), 39–45.

Abrahamson, D., Bryant, M. J., Gutierrez, J. F., Mookerjee, A. V., Souchkova, D., & Thacker, I. E. (2009). Figuring it out:
Mathematical learning as guided semiotic disambiguation of useful yet initially entangled intuitions. In S. L. Swars,
D. W. Stinson, & S. Lemons-Smith (Eds.), Proceedings of the Thirty-First Annual Meeting of the North-American
Chapter of the International Group for the Psychology of Mathematics Education (Vol. 5, pp. 662–670). Atlanta,
GA: Georgia State University.

Arcavi, A. (1994). Symbol sense: Informal sense-making in formal mathematics. For the Learning of Mathematics, 14(3),
24–35.

Artigue, M., Cerulli, M., Haspekian, M., & Maracci, M. (2009). Connecting and integrating theoretical frames: The
TELMA contribution. International Journal of Computers for Mathematical Learning, 14, 217–240.

Badets, A., & Pesenti, M. (2010). Creating number semantics through finger movement perception. Cognition, 115(1),
46–53.

Ball, D. L. (1993). With an eye on the mathematical horizon: Dilemmas of teaching elementary school mathematics.
Elementary School Journal, 93(4), 373–397.

Bamberger, J. (1999). Action knowledge and symbolic knowledge: The computer as mediator. In D. Schön, B. Sanyal,
& W. Mitchell (Eds.), High technology and low Income communities (pp. 235–262). Cambridge, MA: MIT Press.

Bamberger, J., & diSessa, A.A. (2003). Music as embodied mathematics: A study of a mutually informing affinity.
International Journal of Computers for Mathematical Learning, 8(2), 123–160.

Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645.
Bartolini Bussi, M. G., & Boni, M. (2003). Instruments for semiotic mediation in primary school classrooms. For the

Learning of Mathematics, 23(2), 12–19.
Bartolini Bussi, M. G., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: Artefacts and signs

after a Vygotskian perspective. In L. D. English, M. G. Bartolini Bussi, G. A. Jones, R. Lesh, & D. Tirosh (Eds.),
Handbook of international research in mathematics education, 2nd revised edition (pp. 720–749). Mahwah, NJ:
Lawrence Erlbaum.

Batanero, C., Navarro-Pelayo, V., & Godino, J. D. (1997). Effect of implicitly combinatorial model on combinatorial
reasoning in secondary school pupils. Educational Studies in Mathematics, 32, 181–199.

Benfey, O. T. (1958). August Kekulé and the birth of the structural theory of organic chemistry in 1858. Journal of
Chemical Education, 35, 21–23.

Black, M. (1993). More about metaphor. In A. Ortony (Ed.), Metaphors and thought (pp. 19–41). Cambridge, UK:
Cambridge University Press.

Case, R., & Okamoto, Y. (Eds.). (1996). The role of central conceptual structures in the development of children’s thought
(Vol. 61[1–2], Serial No. 246). Chicago, IL: University of Chicago Press.

Clement, J. (1993). Using bridging analogies and anchoring intuitions to deal with students’ preconceptions in physics.
Journal of Research in Science Teaching, 30(10), 1241–1257.

Clement, J., Brown, B., & Zietsman, A. (1989). Not all preconceptions are misconceptions: Finding “anchoring con-
ceptions” for grounding instruction on students’ intuitions. International Journal of Science Education, 11(5),
554–565.

Cobb, P. (1989). A double-edged sword [Review of the book Intuition in science and mathematics]. Journal for Research
in Mathematics Education, 20(2), 213–218.

Cobb, P., & Bauersfeld, H. (Eds.). (1995). The emergence of mathematical meaning: Interaction in classroom cultures.
Hillsdale, NJ: Lawrence Erlbaum.

Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research.
Educational Researcher, 32(1), 9–13.

Dewey, J. (1928/2008). Preoccupation with the disconnected In J. A. Boydston (Ed.), The collected works of John
Dewey: Later works Volume3: 1927–1928 —essays, reviews, miscellany (pp. 25–40). Carbondale and Edwardsville,
IL: Southern Illinois University Press. (From “Body and Mind.” First published in the Bulletin of the NY Academy
of Medicine, 1928).

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 B

er
ke

le
y]

 a
t 0

8:
50

 0
9 

Ja
nu

ar
y 

20
12

 



78 ABRAHAMSON, GUTIÉRREZ, AND BADDORF

diSessa, A. A. (1983). Phenomenology and the evolution of intuition. In D. Gentner & A. Stevens (Eds.), Mental models
(pp. 15–33). Hillsdale, NJ: Lawrence Erlbaum.

diSessa, A. A. (1993). Towards an epistemology of physics. Cognition and Instruction, 10(2–3), 105–225.
diSessa, A. A. (2007). An interactional analysis of clinical interviewing. Cognition and Instruction, 25(4), 523–565.
diSessa, A. A. (2008). A note from the editor. Cognition and Instruction, 26(4), 427–429.
diSessa, A. A., & Sherin, B. (2000). Meta-representation: An introduction. Journal of Mathematical Behavior, 19,

385–398.
diSessa, A. A., & Cobb, P. (2004). Ontological innovation and the role of theory in design experiments. The Journal of

the Learning Sciences, 13(1), 77–103.
diSessa, A. A., Philip, T. M., Saxe, G. B., Cole, M., & Cobb, P. (2010, April–May). Dialectical approaches to cognition

(Symposium). Paper presented at the Annual Meeting of American Educational Research Association, Denver, CO.
Dove, G. (2009). Beyond perceptual symbols: A call for representational pluralism. Cognition, 110(3), 412–431.
Edwards, L., Radford, L., & Arzarello, F. (2009). Gestures and multimodality in the construction of mathematical

meaning [Special Issue]. Educational Studies in Mathematics, 70(2).
English, L. D. (2005). Combinatorics and the development of children’s combinatorial reasoning. In G. A. Jones (Ed.),

Exploring probability in school: Challenges for teaching and learning (pp. 121–141). Dordrecht, The Netherlands:
Kluwer.

Fauconnier, G., & Turner, M. (2002). The way we think: Conceptual blending and the mind’s hidden complexities. New
York, NY: Basic Books.

Fillmore, C. J. (1976). Frame semantics and the nature of language. Annals of the New York Academy of Sciences, 280,
20–32.

Fodor, J. A. (1980). Fixation of belief and concept acquisition. In M. Piattelli-Palmerini (Ed.), Language and learning:
The debate between Jean Piaget and Noam Chomsky (pp. 142–149). Cambridge, MA: Harvard University Press.

Gentner, D. (2001). Spatial metaphors in temporal reasoning. In M. Gattis (Ed.), Spatial schemas and abstract thought
pp. 203–222. Cambridge, MA: MIT. Press.

Ginsburg, H. P. (1997). Entering the child’s mind. New York, NY: Cambridge University Press.
Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research. Chicago,

IL: Aldine.
Glenberg, A. M. (1997). What memory is for. Behavioral and Brain Sciences, 20, 1–55.
Goldin, G. A. (2000). A scientific perspective on structured, task-based interviews in mathematics education research. In

A. E. Kelly & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 517–545).
Mahwah, NJ: Lawrence Erlbaum.

Gomes, G., & Meira, L. (2006). The discourse of logical necessity: Rules for action in pre-school mathematics.
In J. Novotná, H. Moraová, M. Krátká, & N. Stehlíková (Eds.), Proceedings of the Thirtieth Conference of the
International Group for the Psychology of Mathematics Education (Vol. 3, pp. 201–208). Charles University, Prague,
Czech Republic: PME.

Goodwin, C. (1994). Professional vision. American Anthropologist, 96(3), 603–633.
Groth, R. E., & Bergner, J. A. (2005). Preservice elementary school teachers’ metaphors for the concept of statistical

sample. Statistics Education Research Journal, 4(2), 27–42.
Hadamard, J. (1945). The psychology of invention in the mathematical field. New York, NY: Dover.
Herscovics, N., & Linchevski, L. (1996). Crossing the cognitive gap between arithmetic and algebra. Educational Studies

in Mathematics, 30(2), 39–65.
Hutchins, E. (2005). Material anchors for conceptual blends. Journal of Pragmatics, 37(10), 1555–1577.
Jay, M. (1988). Scopic regimes of modernity. In H. Foster (Ed.), Vision and visuality (pp. 3–23). New York, NY: New

Press.
Johnson, M. L. (1987). The body in the mind: The bodily basis of meaning, imagination, and reason. Chicago, IL:

Chicago University Press.
Kelly, A. E. (2004). Design research in education: Yes, but is it methodological? Journal of the Learning Sciences, 13(1),

115–128.
Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from: How the embodied mind brings mathematics into

being. New York, NY: Basic Books.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 B

er
ke

le
y]

 a
t 0

8:
50

 0
9 

Ja
nu

ar
y 

20
12

 



IDIOSYNCRATIC METAPHOR 79

Lemke, J. L. (1998). Multiplying meaning: Visual and verbal semiotics in scientific text. In J. R. Martin & R. Veel
(Eds.), Reading science: Critical and functional perspectives on discourses of science (pp. 87–113). London, UK:
Routledge.

Makar, K., & Rubin, A. (2009). A framework for thinking about informal statistical inference. Statistics Education
Research Journal, 8(1), 82–105.

Mariotti, M. A. (2009). Artifacts and signs after a Vygotskian perspective: The role of the teacher. ZDM: The
International Journal on Mathematics Education, 41, 427–440.

Merleau-Ponty, M. (1958/2005). Phenomenology of perception (C. Smith, trans.). New York, NY: Routledge. (Original
work published 1945.)

Morgan, C., Mariotti, M. A., & Maffei, L. (2009). Representation in computational environments: epistemological and
social distance. International Journal of Computers for Mathematical Learning, 14, 241–263.

Nemirovsky, R. (2003). Three conjectures concerning the relationship between body activity and understanding math-
ematics. In R. Nemirovsky & M. Borba (Coordinators), Perceptuo-motor activity and imagination in mathematics
learning (Research Forum). In N. A. Pateman, B. J. Dougherty & J. T. Zilliox (Eds.), Twenty Seventh Annual Meeting
of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 105–109). Honolulu, HI;
Columbus, OH: Eric Clearinghouse for Science, Mathematics, and Environmental Education.

Nemirovsky, R., & Borba, M. C. (2004). PME special issue: Bodily activity and imagination in mathematics learning.
Educational Studies in Mathematics, 57, 303–321.

Newman, D., Griffin, P., & Cole, M. (1989). The construction zone: Working for cognitive change in school. New York,
NY: Cambridge University Press.

Núñez, R. E., Edwards, L. D., & Matos, J. F. (1999). Embodied cognition as grounding for situatedness and context in
mathematics education. Educational Studies in Mathematics, 39, 45–65.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic Books.
Piaget, J. (1968). Genetic epistemology (E. Duckworth, trans.). New York, NY: Columbia University Press.
Pirie, S., & Kieren, T. E. (1994). Growth in mathematical understanding: How can we characterize it and how can we

represent it? Educational Studies in Mathematics, 26, 165–190.
Poincaré, J. H. (1897/2003). Science and method (F. Maitland, trans.). New York, NY: Dover.
Polanyi, M. (1967). The tacit dimension. London, UK: Routledge & Kegan Paul.
Presmeg, N. C. (1986). Visualisation in high school mathematics. For the Learning of Mathematics, 6(3), 42–46.
Presmeg, N. C. (1992). Prototypes, metaphors, metonymies and imaginative rationality in high school mathematics.

Educational Studies in Mathematics, 23(6), 595–610.
Presmeg, N. C. (1998). Metaphoric and metonymic signification in mathematics. Journal of Mathematical Behavior,

17(1), 25–32.
Presmeg, N. C. (2006). Research on visualization in learning and teaching mathematics: Emergence from psychology.

In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past, present,
and future (pp. 205–235). Rotterdam, The Netherlands: Sense.

Puntambekar, S., & Sandoval, W. A. (2009). Design research: Moving forward (Editor’s note). The Journal of the
Learning Sciences, 18(3), 323–326.

Radford, L. (2003). Gestures, speech, and the sprouting of signs: A semiotic-cultural approach to students’ types of
generalization. Mathematical Thinking and Learning, 5(1), 37–70.

Radford, L. (2006). The anthropology of meaning. Educational Studies in Mathematics, 61(1/2), 39–65.
Radford, L. (2008). Iconicity and contraction: A semiotic investigation of forms of algebraic generalizations of patterns

in different contexts. ZDM: The International Journal on Mathematics Education, 40(1), 83–96.
Resnick, L. B. (1992). From protoquantities to operators: Building mathematical competence on a foundation of everyday

knowledge. In G. Leinhardt, R. Putnam, & R. A. Hattrup (Eds.), Analysis of arithmetic for mathematics teaching (pp.
373–429). Hillsdale, NJ: Lawrence Erlbaum.

Rick, W. (2009). Metaphors & analogies: Power tools for teaching any subject. Portland, ME: Stenhouse.
Roediger, H. L., & McDermott, K. B. (1993). Implicit memory in normal human subjects. In F. Boller & J. Grafman

(Eds.), Handbook of Neuropsychology (Vol. 8, pp. 63–131). Amsterdam. The Netherlands: Elsevier.
Roth, W.-M. (2001). Situating cognition. Journal of the Learning Sciences, 10(1/2), 27–61.
Rotman, B. (2000). Mathematics as sign: Writing, imagining, counting. Stanford, CA: Stanford University Press.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 B

er
ke

le
y]

 a
t 0

8:
50

 0
9 

Ja
nu

ar
y 

20
12

 



80 ABRAHAMSON, GUTIÉRREZ, AND BADDORF

Rowland, T. (1999). Pronouns in mathematics talk: Power, vagueness and generalisation. For the Learning of
Mathematics, 19(2), 19–26.

Rubin, A., & Hammerman, J. (2007). Soup or stew: Metaphors for the relationship between samples and populations.
In D. Pratt & J. Ainsley (Eds.), Reasoning about informal inferential statistical reasoning: A collection of current
research studies – Proceedings of the 5th International Research Forum on Statistical Reasoning, Thinking, and
Literacy (SRTL5). Warwick, UK: University of Warwick.

Ruthven, K., Laborde, C., Leach, J., & Tiberghien, A. (2009). Design tools in didactical research: Instrumenting the
epistemological and cognitive aspects of the design of teaching sequences. Educational Researcher, 38(5), 329–342.

Schegloff, E. A. (1996). Confirming allusions: Toward an empirical account of action. The American Journal of
Sociology, 102(1), 161–216.

Schoenfeld, A. H. (1991). On mathematics as sense-making: An informal attack on the unfortunate divorce of formal
and informal mathematics. In J. F. Voss, D. N. Perkins, & J. Segal (Eds.), Informal reasoning and education (pp.
vii–xvii). Hillsdale, NJ: Lawrence Erlbaum.

Schoenfeld, A. H. (2004). The math wars. Educational Policy, 18, 253–286.
Schoenfeld, A. H., Smith, J. P., & Arcavi, A. (1991). Learning: The microgenetic analysis of one student’s evolving

understanding of a complex subject matter domain. In R. Glaser (Ed.), Advances in instructional psychology (pp.
55–175). Hillsdale, NJ: Lawrence Erlbaum .

Sfard, A. (1994). Reification as the birth of metaphor. For the Learning of Mathematics, 14(1), 44–55.
Sfard, A. (2002). The interplay of intimations and implementations: Generating new discourse with new symbolic tools.

Journal of the Learning Sciences, 11(2/3), 319–357.
Sfard, A. (2007). When the rules of discourse change, but nobody tells you—making sense of mathematics learning from

a commognitive standpoint. Journal of Learning Sciences, 16(4), 567–615.
Siegler, R. S., & Crowley, K. (1991). The microgenetic method: A direct means for studying cognitive development.

American Psychologist, 46(6), 606–620.
Sriraman, B., & English, L. D. (2004). Combinatorial mathematics: Research into practice. Mathematics Teacher, 98,

182–191.
Steiner, G. (2001). Grammars of creation. New Haven, CT: Yale University Press.
Stevens, R., & Hall, R. (1998). Disciplined perception: Learning to see in technoscience. In M. Lampert & M. L. Blunk

(Eds.), Talking mathematics in school: Studies of teaching and learning (pp. 107–149). New York, NY: Cambridge
University Press.

Thagard, P. (2010). How brains make mental models. In L. Magnani, W. Carnielli, & C. Pizzi (Eds.), Model-based
reasoning in science and technology: Abduction, logic, and computational discovery (pp. 447–461). Berlin, Germany:
Springer.

Thompson, P. W. (1993). Quantitative reasoning, complexity, and additive structures. Educational Studies in
Mathematics, 3, 165–208.

Turkle, S., & Papert, S. (1991). Epistemological pluralism and the revaluation of the concrete. In I. Harel & S. Papert
(Eds.), Constructionism (pp. 161–192). Norwood, NJ: Ablex.

van den Heuvel-Panhuizen, M. (2003). The didactical use of models in Realistic Mathematics Education: An example
from a longitudinal trajectory on percentage. Educational Studies in Mathematics, 54(1), 9–35.

Varela, F. J. (1999). Ethical know-how: Action, wisdom, and cognition. Stanford, CA: Stanford University Press.
Vygotsky, L. S. (1934/1962). Thought and language. Cambridge, MA: MIT Press.
Walkerdine, V. (1988). The mastery of reason: Cognitive development and the production of rationality. London, UK:

Routledge.
Wilensky, U. (1997). What is normal anyway?: Therapy for epistemological anxiety. Educational Studies in Mathematics,

33(2), 171–202.
Wilensky, U. (1999). NetLogo. Northwestern University, Evanston, IL: The Center for Connected Learning and

Computer-Based Modeling. Retrieved from http://ccl.northwestern.edu/netlogo/.
Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625–636.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 B

er
ke

le
y]

 a
t 0

8:
50

 0
9 

Ja
nu

ar
y 

20
12

 


