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MATHEMATICAL REPRESENTATIONS AS CONCEPTUAL COMPOSITES: 
IMPLICATIONS FOR DESIGN 
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Positing that mathematical representations are covert conceptual composites, i.e., they implicitly 
enfold coordination of two or more ideas, I propose a design framework for fostering deep 
conceptual understanding of standard mathematical representations. Working with bridging 
tools, students engage in situated problem-solving activities to recruit and insightfully 
recompose familiar representations into the standard representation. I demonstrate this 
framework through designs created for studies in three mathematical domains. 
 

Introduction 
Objectives 

This is a theoretical paper on design for learning mathematics. I propose a design framework 
for fostering deep conceptual understanding of standard mathematical representations. 
Mathematical representations, I posit, are conceptual composites, i.e., they enfold a coordination 
of two or more ideas. For example (see Figure 
1, across), part-to-whole diagrams representing 
the idea of a fraction integrate the 
multiplicative relation between a part and a 
whole, e.g., 2-to-3, and the logical relation of 
inclusion, i.e., the part is integral to the whole 
(see the Design section for further elaboration 
of this figure). The composite nature of 
mathematical representations is often covert—
one can use these representations without 
appreciating which ideas they enfold and how 
these ideas are coordinated. Consequently, 
learners who, at best, develop procedural 
fluency with these representations, may not 
develop a sense of understanding, because they 
do not have opportunities to build on the 
embedded ideas, even if these embedded ideas 
are familiar and robust. For example, students’ 
difficulty with rational numbers (e.g., Post, Cramer, Behr, Lesh, & Harel, 1993) could be related 
to an absence of opportunities to understand how fractions are related to familiar multiplicative 
constructs, such as multiplication and division. Lacking a sense of understanding, in turn, is 
detrimental in terms of students’ mathematical cognition and affect: it hinders the potential 
generativity, creativity, and satisfaction of engaging in mathematical reasoning (Wilensky, 1997) 
and compromises students’ performance in solving problems.  

In the proposed framework, a designer creates a cluster of mathematical representations that 
decompose and “satellite” the target representation, highlighting its covert conceptual 
components. Students learn through engaging in situated problem-solving activities that recruit 
representations from the cluster to recompose them into the standard representation (so learning, 
in a sense, is in the reverse order of design). The teacher leads classroom discussion of situated 
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Figure 1. A part-to-whole fraction 

representation as a conceptual composite. 
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problems to illuminate how the satellite representations are embedded in the target 
representation. Working with bridging tools (Abrahamson, 2004)—“ambiguous” representations 
interpretable as either of the complementary composite components—students recompose the 
components insightfully, as a reconciliation of the tension caused by the ambiguity, into the 
composite captured in the standard representation. For some concepts, this methodology implies 
a critique of conventional instructional sequences. For example, if understanding a multiplicative 
relationship between two quantities is a helpful prerequisite for composing an understanding of 
fractions, then perhaps ratio and proportion should be taught prior to fractions.  

To further demonstrate mathematical representations as conceptual composites, I will 
overview three designs and then compare them and offer my conclusions. First, I explain the 
background of this paper and its theoretical framework.  
 
Background 

The paper emanates from reflection on a decade of studies my collaborators and I have 
conducted on students’ mathematical learning. These design-based research studies (Cobb, 
Confrey, diSessa, Lehrer, & Schauble, 2003) were part of three separate projects and included 
designs for the content domains of fractions, ratio and proportion, and probability, respectively, 
with K-16 participants. Implementations of these designs have had positive effects on students 
(Abrahamson, 2000, 2002, 2003; Abrahamson & Cendak, 2006; Abrahamson, Janusz, & 
Wilensky, 2006; Abrahamson & Wilensky, 2004, 2005, in press; Fuson & Abrahamson, 2005).  

The proposed framework is ‘emergent’ in the sense that it had not been outlined as a 
principled methodology prior to the creation and study of the designs described herein. Yet, an 
assumption underlying this paper is that educators are not always fully conscious of their choices 
in responding to students’ needs, and that effective educational practices, which may be intuitive, 
should be spelled out (e.g., Lampert & Ball, 1998). Thus, the framework described in this paper 
constitutes a post facto summary of structural similarities I am discerning across these designs. 
To the extent that these similarities are not coincidental but in fact illuminate important aspects 
of students’ engagement with mathematical objects, the framework could develop into a 
theoretical model for design—a manual that spells out intuitive aspects of the craft of design and 
formulates these aspects. Such a manual would constitute a tool for designers to progress from 
domain analysis and diagnosis of learning problems toward design, implementation, and data 
analysis. 

Note that this paper focuses on mathematical objects. Important issues of facilitation, such as 
principles and suggestions for using these objects within a classroom forum, will not be 
discussed here. Further more, the paper glosses over auxiliary objects and activities that are not 
pertinent for the discussion of conceptual composites (but see references to other manuscripts 
that describe the designs in full and report on implementations of these designs).  
 
Theoretical Framework: Learning as (Re)-Invention 

The foundations of the proposed design framework are in the philosophies of constructivism 
and phenomenology (Heidegger, 1962; Piaget & Inhelder, 1952). Learning is understood as a 
creative process of discovery grounded in individuals’ embodied interactions in the world. 

Some mathematicians and scholars of creativity (e.g., Poincaré, 2003; Steiner, 2001) describe 
creative insight as the act of joining together ideas that had not previously been combined. These 
innovative composites are captured in mathematical representations that subsequently become 
tools of the trade and part of the historical heritage that is mediated to students. Traditional 
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mathematics education can arguably be described as students learning to use historical tools for 
solving suitable classes of problems. Yet, to the extent that deep understanding is contingent on 
understanding how mathematical tools work (Wilensky, 1993), students need to experience the 
separate ideas of these composites and only then recombine them, thus reinventing the concepts 
(Abrahamson, 2004a, 2004b, 2006).  

If deep understanding is contingent on personal reinvention, educators are to provide as much 
support as is necessary for such reinvention to occur, with the objective that students engage in 
mathematical inquiry and experience conceptual continuity (on 'guided reinvention,' see  
Freudenthal, 1973; Gravemeijer, 1994). The proposed framework for supporting students’ 
personal reinvention of mathematics builds on the Realistic Mathematics Education 
(Freudenthal, 1986) and the ‘radical constructivism’ (von Glasersfeld, 1992) frameworks. In 
particular, the proposed framework attempts to provide specificity—a design template—for 
implementing these philosophies of didactics in terms of objects and activities for mathematics 
learning environments. Towards providing such specificity, the proposed framework interprets 
normative mathematical representations as conceptual composites. The framework also provides 
guidelines for creating bridging tools, new representations and activities that highlight each of 
the embedded aspects of a composite and help students construct (recompose) the composite 
(Abrahamson, 2004b). This principle has been applied for the teaching and learning of fractions 
(Abrahamson, 2000), ratio and proportion (Abrahamson, 2004b; Fuson & Abrahamson, 2005), 
and probability (Abrahamson & Wilensky, 2002, 2004). I will now overview these designs, 
explaining how the framework applies in each. 

 
Designs 

This section presents three designs, focusing on the mathematical representations students 
used in the learning activities. For each design, I state the standard mathematical representation 
interpreted as a conceptual composite and the bridging tools that we created so as: (a) to help 
students build on their previous and emergent understandings; and (b) to support students in 
seeing and coordinating these understandings in the form of the target conceptual composite 
captured in the standard mathematical 
representation. 
 
Fractions 

Fractions, and rational numbers in 
general, are famously infamous, constituting 
the first major learning crisis for many 
elementary-school students yet also 
constituting a gateway to advanced 
mathematical ideas, e.g., algebra and 
probability (Post, Cramer, Behr, Lesh, & 
Harel, 1993). Figure 2 (across) shows an a/b 
fraction in canonical part-to-whole 
(inclusive) form (on top), decomposed into: 
(a) a ratio pair depicting a multiplicative 
relation (on the left); and (b) an exclusive 
fraction, in which the part is exterior to the 
whole (on the right). The multiplicative 

 
   Figure 2. Decomposition of the fraction a/b 

part-to-whole diagrammatic composite. 
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relation within the ratio pair is communicated through visually comparing proportionately-
equivalent pictures of this pair of rectangles (the 'eye trick' optical illusion, Abrahamson, 2002) 
and measuring their true lengths with an extensible ruler (the equistretch), e.g., 2&3 vs. 4&6. 
These measurements are inserted into a table the students create, thus forming a ratio table 
depicting proportional progression. Inclusion is communicated by placing the smaller piece on 
top of the larger one, then removing the smaller one completely, marking only its extent on the 
larger one. Terms shift then from ‘2-to-3’ (marked ‘2:3’) to ‘2-of-the-3 of this 1’ (marked ‘2/3’). 
A fraction is, thus, that part out of a whole that relates to the whole as 2:3 (or '2/3 : 1'; see 
Abrahamson, 2000, 2002). 
 
Ratio and Proportion 

The topic of ratio and proportion is traditionally taught briefly, after fractions. Yet, some 
researchers of mathematics education, e.g., Vergnaud (1983), regard proportion as a potential 
bedrock of the ‘multiplicative 
conceptual field,’ implying that this 
topic should receive more attention in 
mathematics instruction.  

We decomposed proportionality 
into repeated-addition and 
factor*factor action models of 
additive–multiplicative structures. 
The repeated-addition model of 
proportion was represented in a ratio 
table as two linked repeated-addition 
sequences, e.g., +3 and +7 going 
“hand in hand” down two columns as 
a proportional progression (see 
Figure 3, across, on the left). The 
factor*factor model of proportion 
was represented in a proportion 
quartet, a 2-by-2 structure (see 
Figure 3, across, on the right; see also 
Confrey, 1995; Vergnaud, 1983). To 
enhance the multiplicative affordance 
of the quartet, the multiplication-
table factors are included around the cells of the proportion quartet. The multiplication table 
served as the bridging tool—the ratio table is two columns of the multiplication table, and the 
proportion quartet is four cells configuring a rectangle in the multiplication table. 

Students solve unknown-value word problems using each of the three representations and 
investigate their relationships (see Abrahamson, 2003; Abrahamson & Cigan, 2003; Fuson & 
Abrahamson, 2005). 

 
Figure 3. Decomposition of a proportional-equivalence 

diagrammatic composite. 
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Probability 
The domain of probability, along with statistics, is often portrayed as essential for informed 

citizenship, yet students’ understanding of this material is wanting. We chose to focus on the 
classical problems of the binomial. 

Figure 4 (across) shows the binomial distribution (top) decomposed into two constructs: (a) a 
combinatorial space of all possible 
events (‘theoretical,’ on the left); and 
(b) the outcome distribution 
(‘empirical,’ on the right). The 
stochastic device is a 4-block, a 2-by-
2 grid in which each cell is randomly 
either white or black (there are 16 
unique patterns). Both the 
combinatorial space (on the left) and 
the outcome distribution (on the right) 
are organized by the exact number of 
white cells in the blocks: The 16 
unique blocks are organized as 1-4-6-
4-1 (on the left), and outcomes 
converge to those proportions (on the 
right; illustrating the Law of Large 
Numbers). The constructs are bridged 
by the combinations tower, an 
“itemized combinatorial space.” This 
tower features all the unique events, 
yet it is shaped in the form of the 
binomial distribution. The probability 
experiments are run in: (1) the marble 
scooper, a manipulable 4-block device that is dipped into a box full of green and blue marbles to 
pull out samples; and (2) simulations created in NetLogo (Wilensky, 1999), a computer-based 
modeling-and-simulation environment. In the NetLogo simulations ('ProbLab,' see Abrahamson 
& Wilensky, 2002), outcome distributions accumulate samples in the samples’ original form. 
That is, the samples themselves are stacked into bar-chart columns—“stalagmites”—enabling 
students to monitor specific outcomes within columns and not only relations between columns. 
Students construct the tower, run experiments, and discuss connections within and between 
theoretical and empirical activities (see Abrahamson & Cendak, 2006; Abrahamson & Wilensky, 
2002, 2005). 

 
Summary 

The paper introduced the design-theory construct ‘conceptual composite’ that frames domain 
analyses of mathematical concepts toward designing classroom learning artifacts. Standard 
mathematical representations are interpreted as implicitly enfolding ideas that students need to 
coordinate, thus “reinventing” the composite. Three designs were presented. For each, I 
interpreted students’ learning challenge as difficulty in penetrating the canonical representation. 
Also, I presented clusters of new representations, including ‘bridging tools,’ which were created 
to enable students both to build on their mathematical understandings and to coordinate these 

 
Figure 4. Decomposition of the binomial-distribution 

diagrammatic composite. 
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understandings as a composite grounded in the standard mathematical representation (see Table 
1, below, for a summary of these designs). 
 
Table 1. 
Decomposition of Mathematical Conceptual Composites and Bridging Tools for Recomposition 

Concept 
Diagrammatic 
Embodiment Decomposition Design Diagram Bridging Tools, Media 

Fractions, 
e.g., 2/3 

Part-to-Whole 
Multiplicative 

Relation 

Part-to-Part Ratio 
& Inclusion 

 

The Equistretch (wood board; stretchable 
rubber ruler; set of laminated pictures; set 
of plastic strips; erasable markers; hook-
and-loop fasteners; set of proportionately 
equivalent pictures for the eye-trick optical 
illusion, e.g., “wallet size,” “album size”). 

Ratio and 
Proportion, 
e.g., 
6:14 = 
15:35  

Proportional 
Equivalence  
(four values) 

Repeated-
Addition & 

Multiplication 

 

Multiplication Table, Ratio Table, and 
“Proportion Quartet” (drawing material 
for situation stories; classroom-poster 
multiplication table; personal worksheets; 
multiplication-table column cutouts; 
situations describe two linked 
“multiplication stories,” e.g., “Robin saves 
$3 a day while Tim saves $7 a day”). 

Probability: 
Binomial 
Function, 
e.g.,  
P.5 (2 | 4) 

Binomial 
Distribution 

Combinatorial 
Space & 
Outcome 

Distribution 

 

4-Block stochastic device in three media: 
marble scooper for sampling 4 marbles 
from box containing many of two colors; 
combinations tower combinatorial space of 
stock-paper and crayons; NetLogo 
Stalagmite computer simulation. 

 
One of the teacher's roles is to demonstrate to the students how the mathematical 

representations within the cluster are related to each other. The teacher uses gestures and actual 
manipulations to highlight embedded properties and enact reversible transformation. For 
example, the teacher lifts a 'part' and places it on the 'whole' and then removes the 'part,' or the 
teacher pulls out of the multiplication table two or three columns that are needed to solve a 
proportion problem. Students practice these same actions in the context of solving problems. 

Conceptual composites can be seen as analogous to a grain of salt—an opaque solid 
substance that only once re-presented as ‘NaCl,’ reveals its sodium and chlorine elements. That 
is, decomposing a conceptual composite can be a difficult task—it can be done by a designer or 
teacher who are well versed in the content, but hardly so by a student who does not know which 
elements to search for, let alone how these elements are coordinated within the composite. 

 
Contribution 

I have shared my research-based insights into the psychology of mathematics education. The 
nature of this research is interdisciplinary, in that the proposed framework is an attempt to 
articulate coherently a theory–practice reciprocity in the craft of designing for mathematical 
teaching and learning. This emergent framework may contribute to the work both of researchers 
and practitioners: (a) For design-based researchers, this framework may generate both analyses 
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and design in further mathematical domains; and (b) the framework may inform guidelines for 
professional development and, specifically, it may sensitize teachers to the possible opacity of 
some taken-as-shared mathematical constructs—historically bridged composites that students 
receive “unabridged.” Teachers informed by this framework may have new facilitation tools for 
seeing through the smokescreen of procedural fluency and helping students rebuild conceptual 
knowledge on their own robust understanding. 
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