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Abstract	and	Keywords

This	chapter	is	an	overview	of	central	research-based	perspectives	that	support	teaching-learning	for
understanding	and	for	fluency.	We	summarize	the	Class	Learning	Path	Model	that	integrates	two	theoretical	foci	–	a
Piagetian	focus	on	learning	and	a	Vygotskiian	focus	on	teaching	–	and	specifies	phases	in	learning	that	reflect
Vygotsky’s	assertion	about	the	move	from	spontaneous	to	scientific	concepts.	Major	aspects	of	the	model	were
drawn	from	national	research-based	reports.	This	model	connects	understanding	and	fluency	with	a	focus	on
mathematically	important	but	also	accessible	methods	in	the	middle	and	on	maths	drawings	and	other	supports	for
understanding	these	methods.	Such	methods	can	be	generated	by	students	and	can	bridge	from	less-advanced
student	methods	to	formal	methods	that	are	unnecessarily	complex.	For	three	maths	domains	in	Grades
Kindergarten	through	Grade	6,	we	illustrate	and	discuss	methods	in	the	middle	and	drawings	(diagrams)	that
support	these	methods:	problem	solving	and	especially	the	full	range	of	word	problem	situations	with	each	quantity
the	unknown;	multidigit	addition,	subtraction,	multiplication,	and	division;	and	ratio	and	proportion.	Central	features
of	the	Common	Core	State	Standards	Mathematical	Practices	(CCSSO/NGA	2010)	in	these	domains	are	identified,
and	how	these	can	support	understanding	and	fluency	are	briefly	discussed.	Further	aspects	of	how	the
pedagogical	supports	help	students	move	through	the	Class	Learning	Path	in	their	own	individual	ways,	and
implications	for	research	and	for	designing	maths	programmes	are	then	discussed.
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The	past	40	years	have	seen	an	explosion	of	research	on	numerical	cognition	and	some	research	on	how	best	to
teach	various	numerical	topics.	It	is	now	clear	that	children	develop	different	methods	for	solving	numerical
problems	and	that	these	move	from	simple	and	slow	to	more	advanced	and	rapid.	Early	on	children	worldwide	go
through	a	progression	of	levels	of	counting,	adding,	and	subtracting.	However,	as	the	numerical	topics	become
more	advanced,	and	cultural	symbol	systems	become	more	central,	children’s	methods	increasingly	depend	on
what	they	are	taught	in	school.

Research	on	children’s	thinking	and	on	methods	they	develop	has	often	been	carried	out	within	a	Piagetian
perspective	(e.g.	1965/1941).	Research	focused	more	on	cultural	symbol	systems	has	often	been	carried	out
within	a	Vygotskiian	perspective	(Vygotsky,	1934/1986,	1978).	Fuson	(2009)	discussed	extreme	views	of	teaching
that	are	sometimes	drawn	from	a	Piagetian	view	(‘learning	without	teaching’	that	values	only	children’s	invented
methods)	and	from	a	Vygotskiian	view	(‘teaching	without	learning’	with	a	traditional	emphasis	on	fluency,	rather
than	on	meaning	making).	A	balanced	learning–teaching	approach	that	relates	these	views	was	summarized	in	that
paper.	In	this	approach,	called	learning	path	teaching,	mathematically	desirable	methods	that	are	accessible	to
children,	and	may	have	been	invented	by	children,	are	linked	to	and	explained	using	maths	drawings	or	other
visual	referents	to	support	meaning	making.	This	approach	enables	all	children	to	use	general	methods	with
understanding	and	move	to	fluency.

In	this	paper,	we	describe	this	balanced	middle	in	more	detail	as	the	Class	Learning	Path	Model,	provide	examples
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in	three	maths	domains	that	show	different	aspects	of	such	balanced	learning-teaching,	and	then	relate	this	view	to
past	and	present	efforts	to	reform	mathematics	education	in	various	countries.	This	approach	allows	us	to
exemplify	major	results	on	numerical	cognition	that	affect	mathematics	education	and	to	identify	fruitful	new
directions	for	such	research.

Teaching/Learning	Within	a	Class	Learning	Path

The	Class	Learning	Path	Model	integrates	two	theoretical	foci	–	a	Piagetian	focus	on	learning	and	a	Vygotskiian
focus	on	teaching	–	and	specifies	phases	in	learning	that	reflect	Vygotsky’s	assertion	about	children’s	move	from
spontaneous	to	scientific	concepts	(this	model	is	discussed	in	more	detail	in	Fuson	&	Murata	2007;	Fuson,	Murata,
&	Abrahamson,	2011;	Murata	&	Fuson,	2006).	Major	aspects	of	the	model	were	drawn	from	principles	in	two
National	Research	Council	reports	on	research	on	maths	teaching	and	learning	(Donovan	&	Bransford,	2005;
Kilpatrick,	Swafford,	&	Findell,	2001)	and	from	the	National	Council	of	Teachers	process	standards	(National	Council
of	Teachers	of	Mathematics,	2000)	in	the	United	States.	These	reports	and	initiatives	are	based	on	intensive
reviews	of	the	research.

This	model	also	draws	from	two	other	sources	–	research	by	the	second	author	analysing	Japanese	approaches	to
teaching	(Murata,	2008,	2013)	and	results	of	a	10-year	research	and	curriculum	development	project,	the
Children’s	Math	Worlds	Project,	directed	by	the	first	author.	The	project	developed	teaching	materials,	implemented
them	with	teachers	in	a	wide	range	of	classrooms,	and	revised	them	in	several	cycles	of	revision.	The	materials
sought	to	find	and	stimulate	student	methods	in	the	middle	that	would	relate	to	traditional	methods,	but	be	easier	to
understand	and	to	carry	out.	This	project	drew	from	and	contributed	to	on-going	research	and	research	reviews
(e.g.	Fuson,	1992,	2003).	It	was	published	as	a	Kindergarten	through	Grade	5	full	maths	programme	Math
Expressions	(Fuson,	2006)	and	now	includes	Grade	6	(2012).	This	programme	contains	a	coherent	sequence	of
research-based	visual	models	and	methods	in	the	middle	that	do	connect	children’s	invented	methods	with
traditional	methods	along	a	learning	path.

Mathematics	education	and	cognitive	research	have	many	different	terms.	The	lack	of	a	shared	language
complicates	communication	efforts.	However,	considerable	research	has	been	reported	as	learning	paths
(trajectories,	progressions)	through	which	students	move	from	basic	and	often	informal	understandings	and
methods	to	more	formal,	advanced,	and	fluent	methods	(e.g.	Clements	&	Sarama,	2009,	2012).	In	Fuson	et	al.
(2011),	we	sought	to	bring	together	various	perspectives	on	understanding	and	fluency,	provide	a	model	of
classroom	teaching/learning	that	included	this	learning	path	research,	and	provide	language	that	would
communicate	across	different	kinds	of	research	literature.	We	found	the	word	‘form’	to	be	a	central	unifying	term.
We	characterized	Piaget’s	and	Vygotsky’s	conceptual	activity	as	involving	three	types	of	external	maths	forms:
situational	(contextual),	pedagogical,	and	cultural	math	forms	(Piaget,	1941/1965;	Vygotsky,	1934/1986,	1978).
Each	learner	continually	forms	and	re-forms	individual	internal	forms	(IIFs)	that	are	interpretations	of	the	external
forms.	This	parallel	use	of	the	word	forms	links	the	external	and	internal	forms,	but	emphasizes	that	each	individual
internal	form	may	vary	from	the	external	form	because	the	internal	form	is	an	interpretation.	Doing	maths	is	using
individual-internal-forms-in-action	to	form	actions	with	external	forms.	Within	a	class	learning	path,	each	learner
moves	in	a	learning	path	from	using	informally-learned	spontaneous	forms	to	using	explicitly-learned	academic
cultural	maths	forms	(Vygotsky,	1934/1986).	Such	movement	can	be	stimulated	within	the	classroom	by
teaching/learning	that	is	inter-	or	intra-semiotic	mediation	(re-forming	forms)	via	instructional	conversations	within
class	learning	zones.	Teaching	(by	the	Teacher	and	by	all	of	the	students	at	some	times)	leads	learners’	attention
to	aspects	of	the	external	forms	and	supports	inter-forming	them	by:

Teaching:	inscribing,	speaking	and	gesturing	about,	and	inter-forming	external	forms.
Learning:	re-forming	individual	internal	forms	in	response	to	teaching.

Such	interactive	cognizing	over	time	leads	to	increasingly	similar	individual	internal	forms	that	can	be	taken-as-
shared	(Cobb	&	Bauersfeld,	1995).	The	individual	forms	become	increasingly	well-formed	(correct	and
mathematically	advanced),	and	they	inter-form	into	networks	of	individual	internal	forms	for	the	topic.

Vygotsky’s	zone	of	proximal	development	is	what	an	individual	can	learn	with	assistance	(1934/1986).	We	use	the
term	class	learning	zone	to	mean	what	a	given	class	can	learn	with	the	assistance	of	a	teacher	and	of	the
pedagogical	and	situational	external	forms.	Instructional	conversations	are	possible	because	the	external	forms
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and	the	means	of	assistance	illuminating	and	inter-forming	the	external	forms	direct	and	constrain	the	possible
individual	internal	forms	that	individuals	create	and	use	within	the	classroom	forms-in-action.	Each	student’s
individual	internal	forms	evolve	within	the	class	learning	path	toward	a	well-formed	network	of	individual	internal
forms	that	can	inter-form	with	other	students’	networks,	but	still	have	idiosyncratic	differences.	This	movement	of
individuals	within	the	class	learning	path	can	be	visualized	as	paths	intertwining	and	coming	closer	within	a
corridor	(Confrey,	2005)	that	overall	looks	more	like	a	truncated	cone	as	all	class	members	inter-form	their
individual	internal	forms	while	cognizing	interactively	with	assistance	(Murata,	2013).

Notice	that	the	whole	learning	path	of	methods	can	be	elicited	in	Phase	1	or	introduced	early	in	Phase	2	(these
methods	are	labelled	as	at	Level	0,	1,	and	2	in	Table	1).	The	classroom	instructional	conversations	support
individualized	instruction	within	whole-class	activity	as	the	methods	of	all	students	appear	and	are	discussed.
Diversity	can	be	accepted	and	used	to	increase	understanding	by	all,	but	the	Class	Learning	Path	model	also
assumes	and	makes	possible	the	realization	of	high	academic	expectations	by	the	early	introduction	and	support
of	visual	models	and	methods	in	the	middle	(Murata,	2013).

Table	1	Four	Phases	in	the	Class	Learning	Path	to	Well-Formed	Networks	of	Individual	Internal	Forms

Solution	Method	or	Situation	Form	by	Level	at	Each	Phase

Phase	1	Guided	Introducing:	Eliciting	Individual	Internal	Forms	and	Forming	Initial	Forms-in-Action

Level	0 Level	1 Level	2

unformed basic	&
slow

a)	mathematically-desirable	&	accessible	(MD&A)

typical
errors

b)	mathematically-desirable	&	not	accessible	(often	current	common
methods)

Phase	2	Learning	Unfolding:	Forming	Well-Formed	Individual	Nets-For-Action	(Major	Meaning-Making	Phase)

Level	0 Level	1 Level	2

MD&A	methods	dominate	errors	decrease

Phase	3	Kneading	Knowledge:	Major	Fluency	Phase	for	Fast-Forms-in-Action

Level	0 Level	1 Level	2

Each	student	fast-forms	one	Level	2	(mathematically	desirable)	method;	many
students	inter-form	≥2	methods.

Phase	4	Maintaining	Fluency	and	Relating	to	Later	Topics:	Remembering	Fluent	Methods	and	Re-Forming
Individual	Nets-For-Action

Level	0 Level	1 Level	2

Each	student	remembers	and	maintains	Phase	3	performance.

( )	The	current	common	method	sometimes	is	mistermed	“the	standard	algorithm”	but	should	be	considered	as
one	variation	of	the	standard	algorithmic	approach,	which	uses	the	major	ideas	of	the	method.

a

a
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The	four	phases	in	the	Class	Learning	Path	model	came	from	earlier	work	reported	in	Murata	and	Fuson	(2006),
Fuson	and	Murata	(2007),	and	Murata	(2008)	that	used	research-based	principles	from	NRC	reports	and	the	NCTM
Process	Standards	to	justify	the	parts	of	the	model	(see	Box	1).	The	model	itself	was	drawn	from	our	on-going	work
describing	common	features	of	two	kinds	of	classrooms	that	both	used	this	model	–	those	in	the	Children’s	Math
Worlds/Math	Expressions	classrooms	and	in	Japanese	classrooms.	Box	1	provides	crucial	detail	that	relates	to
student	numerical	cognizing,	and	provides	a	fuller	view	of	classrooms	in	action	that	support	and	advance	student
cognizing.

An	early	version	of	these	four	phases	was	presented	at	a	conference	with	Japanese	maths	educators	(Lewis	&
Takahashi,	2006)	to	frame	a	requested	discussion	of	the	‘maths	wars’	in	the	United	States.	The	response	of	the
Japanese	educators	was	that	they	use	the	same	four	phases	in	their	elementary	maths	curricula.	Japanese
teachers’	manuals	that	accompany	elementary	mathematics	textbooks	generally	outline	and	describe	these
phases.	We	use	here	translations	of	these	terms	by	Murata	(2008)	for	the	first	three	phases	in	Table	1	and	Box	1	–
guided	introducing,	learning	unfolding,	and	kneading	knowledge.

Box	1	NRC	principles	and	NCTM	Standards	Summarize	the	Class	Learning	Path	Model

Overall:	create	the	year-long	nurturing	meaning-making	maths-talk	community

•	The	teacher	orchestrates	collaborative	instructional	conversations	focused	on	the	mathematical
thinking	of	classroom	members	(How	Students	Learn	Principle	1	and	NCTM	Process	Standards:	Problem
Solving,	Reasoning	&	Proof,	Communication).

•	Students	and	the	teacher	use	responsive	means	of	assistance	that	facilitate	learning	and	teaching	by
all:	engaging	and	involving,	managing,	and	coaching:	modelling,	clarifying,	instructing/explaining,
questioning,	and	feedback.

For	each	maths	topic:	use	inquiry	learning	path	teaching–learning

The	teacher	supports	the	meaning-making	of	all	classroom	members	by	using	and	assisting	students	to	use
and	relate	(inter-form)	coherent	mathematical	situations,	pedagogical	forms,	and	cultural	mathematical	forms
(NCTM	Process	Standards:	Connections	&	Representation)	as	the	class	moves	through	four	class	learning
zone	teaching	phases.

Phase	1	guided	introducing

Supported	by	the	coherent	pedagogical	forms,	the	teacher	elicits	and	the	class	works	with	understandings
that	students	bring	to	a	topic	(How	Students	Learn	Principle	1).

(a)	Teacher	and	students	value	and	discuss	student	ideas	and	methods	(they	inter-form	the	individual
internal	forms-in-action	using	external	forms).
(b)	Teacher	identifies	different	levels	of	solution	methods	used	by	students	and	typical	errors	and
ensures	that	these	are	seen	and	discussed	by	the	class.

Phase	2	Learning	unfolding	(major	meaning-making	phase)

The	Teacher	helps	students	form	emergent	networks	of	forms-in-action	(How	Students	Learn	Principle	2):

(a)	Explanations	of	methods	and	of	mathematical	issues	continue	to	use	maths	drawings	and	other
pedagogical	supports	(external	forms)	to	stimulate	correct	relating	(inter-forming)	of	the	forms.
(b)	Teacher	focuses	on	or	introduces	mathematically-desirable	and	accessible	method(s).
(c)	Erroneous	methods	are	analysed	and	repaired	with	explanations.
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(d)	Advantages	and	disadvantages	of	various	methods	including	the	current	common	method	are
discussed	so	that	central	mathematical	aspects	of	the	topic	become	explicit.

Phase	3	kneading	knowledge	(fluency)

The	Teacher	helps	students	gain	fluency	with	desired	method(s):

•	Students	may	choose	a	method.

•	Fluency	includes	being	able	to	explain	the	method.

•	Some	reflection	and	explaining	still	continue	(kneading	the	individual	internal	forms)

•	Students	stop	making	maths	drawings	when	they	do	not	need	them	(Adding	It	Up:	fluency	&
understanding).

Phase	4	maintaining	fluency	and	relating	to	later	topics

The	teacher	assists	remembering	by	giving	occasional	problems	and	initiates	and	orchestrates	instructional
discussions	to	assist	re-forming	individual	internal	forms	to	support	(form-under)	and	stimulate	new	individual
internal-nets-for-action	for	related	topics.

Result:	together	these	achieve	the	overall	high-level	goal	for	all

Build	resourceful	self-regulating	problem	solvers	(How	Students	Learn	Principle	3)	by	continually	intertwining
the	5	strands	of	mathematical	proficiency:

•	Conceptual	understanding.
•	Procedural	fluency.
•	Strategic	competence.

•	Adaptive	reasoning.
•	Productive	disposition	(Adding	It	Up).

Aspects	of	Table	1	and	Box	1	obviously	relate	to	many	other	theoretical	and	research	perspectives.	Some	of	these
are	discussed	in	the	reports	from	which	aspects	were	drawn,	and	some	in	the	longer	papers	about	this	model	(e.g.
Gal’perin’s	instructional	framework	is	discussed	in	Murata	(2008),	and	the	internalizing	and	abbreviating	movement
from	‘speech	for	others’	to	‘speech	to	self’	is	discussed	in	the	Fuson/Murata	papers).	We	will	mention	here	the
importance	of	Case’s	neo-Piagetian	framework	as	it	undergirds	the	notion	of	learning	paths	as	building	another	step
onto	a	method	that	has	become	more	fluent	and	of	Case’s	educational	work	identifying	bridging	contexts	as
meaning-making	supports	(e.g.	Case,	1991;	Case	&	Okamoto,	1996).	Our	framework	highlights	the	need	for
coherence	within	all	maths	programmes	so	that	they	can	build	systematically	and	the	need	for	sufficient	work	to
prepare	children	to	have	understandings	required	for	simple	Level	1	solution	methods	for	Phase	1	before	methods
are	elicited.

The	Importance	of	Maths	Drawings,	Mathematically-Desirable	and	Accessible	Methods

MD&A	methods,	and	extended	Phase	2	instructional	conversations

Phase	1	is	emphasized	in	reform	curricula	–	eliciting	and	discussing	children’s	invented	methods	and	focusing	on
understanding.	Traditional	curricula	emphasize	Phase	3	to	focus	on	fluency.	The	new	important	part	of	the	model	is
Phase	2	that	connects	Phase	1	and	Phase	3,	and	provides	deep	and	ambitious	learning.	As	students	compare,
contrast,	and	analyse	(inter-form)	different	methods	in	Phase	2,	core	maths	concepts	can	be	lifted	up	from	the
problem	contexts	or	specific	methods	and	connected	(inter-formed	within	their	individual	internal	forms).	Coherent
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pedagogical	forms	(and	especially	the	mathematically-desirable	and	accessible	methods	and	maths	drawings)
enable	students	to	inter-form	their	external	forms	to	foster	the	growth	of	increasingly	well-formed	(culturally
adapted	and	taken-as-shared)	individual	internal	forms.

The	word	inquiry	in	inquiry	learning-path	teaching–(learning)	is	used	here	primarily	in	the	sense	of
problematizing	all	topics	(Freudenthal,	1983;	Hiebert,	Carpenter,	Fennema,	Fuson,	Murray,	Olivier,	et	al.	1996).
Students	are	to	approach	all	topics	with	inquiring	minds,	seeking	to	understand	and	to	share	their	own	thinking	with
classmates.	Inquiry	learning	path	teaching–learning	for	a	given	topic	requires	coherent	mathematical	situations,
pedagogical	forms,	and	cultural	maths	forms	for	a	given	topic	to	assist	students	in	attuning	their	emergent
individual	networks-in-action	through	learning	paths	to	well-formed	networks	of	individual	internal	forms.

Phase	2	is	the	heart	of	this	process,	as	the	class	focuses	on	and	discusses	mathematically-desirable	and
accessible	(MD&A)	methods	with	the	help	of	some	kind	of	visual	supports	for	meaning-making.	A	major	research
result	of	the	10	years	of	classroom	research	underlying	Math	Expressions	was	the	importance	of	maths	drawings
(visual	models,	diagrams)	as	pedagogical	forms	to	support	individual	thinking	and	problem	solving	and	instructional
conversations	(such	Maths	Talk	is	discussed	in	more	detail	in	Fuson,	Atler,	Roedel,	&	Zaccariello,	2009;	Hufferd-
Ackles,	Fuson,	&	Sherin,	2004).	Maths	drawings	facilitate	problem	solving	because	students	can	relate	steps	in	the
maths	drawing	to	steps	with	maths	symbols	(cultural	maths	external	forms)	and	can	label	the	drawing	to	relate	to
the	problem	situation	or	to	maths	concepts	(e.g.	tens).	These	drawings	can	help	bridge	problem	situations	with
mathematical	solutions	through	mathematizing	(Murata	&	Kattubadi,	2012).	Maths	drawings	assist	instructional
conversations	because	they	can	be	put	on	the	board	for	all	to	see	and	leave	a	trace	of	all	steps	in	the	thinking,	so
each	step	can	be	explained.	They	are	inexpensive,	easy	to	manage,	can	be	used	on	homework,	and	remain	after
the	problem	is	solved	to	support	reflection	and	further	explanation.	Teachers	can	collect	pages	containing	them
and	reflect	on	these	windows	into	the	minds	of	students	outside	of	the	class	time.	Many	East	Asian	elementary
maths	programmes	also	have	a	history	of	using	diagrams,	as	do	some	other	countries	around	the	world.	Maths
drawings	initially	can	show	all	of	the	objects	and	later	they	can	be	diagrams	with	numbers	in	them.	An	initial	phase
of	concrete	objects	may	be	helpful	for	very	young	children	or	for	some	special	needs	children,	but	for	many	maths
topics	this	can	be	very	short	or	non-existent.

We	exemplify	now	coherent	sets	of	visual	models	and	the	mathematically-desirable	and	accessible	methods	for
two	crucial	domains	of	the	elementary	school	content	–	problem-solving	and	multidigit	computation.	These	are
drawn	from	the	extensive	classroom-based	design	research	of	Math	Expressions.	These	examples	permit	the
reader	to	get	some	sense	of	how	student	cognizing	has	become	the	centre	of	new	visions	of	teaching	and
learning.	The	research	on	these	domains	is	vast	and	cannot	be	summarized	here,	nor	can	the	methods	or	models
be	discussed	in	detail	(for	more	details,	see	the	Clements	and	Sarama,	the	Fuson,	and	the	NRC	reports	referenced
above	and	the	Fuson,	2013,	professional	development	webcasts	for	various	topics	listed	under	projects	on
https://www.sesp.northwestern.edu/profile/?p=61).

Diagrams	for	representing	problem	situations
There	is	a	large	international	research	base	about	representing	and	solving	word	problem	types	as	the	bases	for
understanding	of	operations	(+,	–,	×,	÷).	Learning	paths	of	difficulty	have	been	identified	that	depend	on	the
problem	types	and	the	particular	unknown.	Algebraic	problems	are	those	where	the	situation	equation,	such	as	≤
+	4	=	9,	is	not	the	same	as	the	solution	equation,	4	+	≤	=	9	or	9	–	4	=	≤.	Students	can	also	work	in	kindergarten
with	forms	of	equations	with	one	number	on	the	left	(e.g.	5	=	2	+	3	and	5	=	4	+	1)	as	they	decompose	a	given
number	(here,	5)	and	record	each	decomposition	by	a	drawing	or	equation.	Experience	with	these	various	forms	of
equations	can	eliminate	the	typical	difficulty	many	students	have	with	equations	in	algebra,	where	their	limited
experience	with	one	form	of	equation	leads	them	to	expect	only	equations	with	one	number	on	the	right.
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Figure	1 	The	related	MD&A	diagrams	for	addition	(top	row)	and	multiplication	(bottom	row)	situations.

Figure	1	shows	the	final	pedagogical	forms	used	in	Math	Expressions	to	represent	(form)	the	situations	(for	more
details	about	these	drawings,	see	Fuson	&	Abrahamson,	2012).	The	diagrams	support	a	student	with	algebraic
problem-solving	–	represent	the	situation	by	making	a	diagram	and	then	use	the	numerical	relationships	in	that
diagram	to	find	the	solution.	The	diagrams	are	the	Phase	2	MD&A	methods	in	the	middle	for	algebraic	problem-
solving.	They	have	moved	beyond	students’	Level	1	maths	drawings	that	show	all	of	the	objects,	and	they	are	not
yet	algebra,	which	uses	only	an	equation	to	represent	the	situation.	These	diagrams	bridge	these	two	levels	and
give	students	extensive	experience	with	writing,	understanding,	solving,	and	explaining/discussing	situation
equations	like	☐	–	538	=	286	or	5/7	=	2/7	+	☐.

Seeing	the	diagrams	together	shows	their	coherence,	e.g.	equal	group	situations	arise	from	add	to/take	from	or	put
together/take	apart	situations	when	an	addend	is	a	group	that	is	added	repeatedly,	and	additive	comparisons
likewise	become	specially	restricted	as	multiplicative	comparison	situations.	Figure	1	shows	how	different	situations
actually	involve	different	meanings	of	the	equals	sign,	indicated	at	the	bottom	of	each	cell.	This	single	set	of
diagrams	can	be	used	for	all	of	the	quantities	students	experience	through	Grade	6	(from	single-digit	numbers
through	fractions	and	decimals)	and	for	many	multi-step	problems.	They	thus	also	support	Phase	4	connections
among	problem	situations	as	students	move	through	the	grades.

Maths	drawings	and	MD&A	methods	for	multidigit	computation

Click	to	view	larger

Figure	2 	Mathematically-desirable	and	accessible	algorithms	and	diagrams.

Understanding	multidigit	computation	requires	understanding	the	nature	of	the	numbers	involved.	There	is
considerable	research	on	ways	to	show	the	meanings	of	multidigit	numbers	and	on	different	methods	of	computing.
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Continual	reviewing	of	such	research	from	around	the	world,	and	classroom-based	research	into	supports	and
methods	invented	in	our	Children’s	Math	Worlds	classrooms,	were	carried	out	for	many	years.	Mathematically-
desirable	methods	were	then	tested	with	a	range	of	students	and	teachers	in	other	classrooms	to	find	out	how	easy
they	were	to	understand	and	carry	out.	The	final	Math	Expressions	research-based	maths	drawings	(in	the	left
column)	and	MD&A	methods	for	multidigit	addition,	subtraction,	multiplication,	and	division	are	shown	in	the	middle
column	of	Figure	2.	These	methods	were	all	invented	in	classrooms	and	are	described	in	more	detail	in	Fuson
(2003),	in	National	Council	of	Teachers	of	Mathematics	(2010,	2011),	and	in	the	Number	and	Operations	in	Base
Ten	professional	development	webcasts	listed	under	Projects	on	https://www.sesp.northwestern.edu/profile/?p=61.
Related	pedagogical	forms	that	support	the	meaningful	development	and	use	of	the	quick-hundreds,	quick-tens,
and	ones	and	of	the	area	models	are	also	discussed	in	these	resources.	Students	inter-form	the	drawings	with	the
written	methods	(link	them	step-by-step)	so	that	the	cultural	maths	place-value	symbols	take	on	meanings	as
hundreds,	tens,	and	ones.	Students	use	such	place-value	language	in	their	explanations	to	support	this	inter-
forming.	We	found	that	some	students	want	the	extra	support	within	a	written	method	of	the	expanded	notation
forms	that	show	the	place	values	separately.	Three	of	the	MD&A	methods	show	such	expanded	notation.

The	mathematically-desirable	and	accessible	methods	in	the	middle	use	the	standard	algorithmic	approach,	but
write	the	steps	in	different	places	or	ways	than	in	the	current	common	form	of	that	approach.	The	term	‘the
standard	algorithm’	actually	refers	to	the	major	mathematical	features	of	the	process	and	not	to	the	details	of	how
these	are	written.	Thus,	all	of	the	methods	in	Figure	2	can	be	called	‘the	standard	algorithm’	for	purposes	of	goals
that	require	such	use.	Phase	2	instructional	conversations	focusing	on	how	the	methods	are	alike	and	different
help	students	understand	the	big	ideas	involved,	and	that	these	ideas	can	be	written	in	different	ways.

The	versions	in	the	middle	are	more	accessible	than	are	the	current	common	forms	in	the	right	column.	For
example,	the	addition	and	subtraction	methods	in	the	table	all	add/subtract	like	units	(place	values)	and
group/ungroup	between	adjacent	place-value	units	where	needed.	However,	New	Groups	Below	is	easier	than	New
Groups	Above	because:

•	The	2-digit	totals	can	be	seen	more	easily.

•	The	new	one	ten	or	one	hundred	waits	below,	so	you	add	the	two	numbers	you	see	and	then	add	the	new
group	if	needed.

•	You	write	the	totals	in	the	usual	order	(e.g.	1	ten	6	ones,	not	as	6	ones	then	1	ten).

•	and	you	do	not	change	the	problem	by	writing	numbers	up	within	it,	instead	of	down	at	the	bottom.

The	subtraction	method	allows	students	to	keep	using	one	operation	(ungrouping)	and	then	change	to	subtracting,
rather	than	alternating	ungrouping	and	subtracting,	which	is	more	difficult.	The	area	model	organizes	the
multiplications,	and	the	expanded	notation	method	has	supports	to	align	like	place	values,	see	the	places	in	the
multiples,	and	remember	which	products	one	has	done.

Expanding	cultural	maths	forms	to	become	pedagogical	forms

Click	to	view	larger

Figure	3 	Using	the	multiplication	table	for	teaching	and	learning	ratio	and	proportion.

A	final	example	shows	how	cultural	maths	forms	can	take	on	meanings	by	being	inter-formed	with	situations,	and
how	they	can	be	extended	or	abbreviated	by	students	and	by	design	researchers	to	become	pedagogical	forms
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inter-formed	with	both	situations	and	cultural	maths	forms.	Figure	3	presents	the	major	forms	and	situations	used	in
a	unit	on	ratio	and	proportion	for	fifth	graders	(Abrahamson,	2003;	Abrahamson	&	Cigan,	2003;	Fuson	&
Abrahamson,	2005).	Because	many	proportion	errors	involve	students	adding	instead	of	multiplying,	we	wanted	to
ground	the	topic	firmly	in	multiplication.	We	did	this	by	inter-forming	ratio	tables	and	2	×	2	proportion	forms	with	the
multiplication	table	and	with	basic	ratio	incrementing	stories,	such	as	how	the	money	in	the	banks	of	two	siblings
increased	by	$3	(for	Robin)	and	by	$7	(for	Tim)	a	day.	Students	enacted	this	story	by	successive	additions	that
they	recorded	in	separate	ratio	tables	and	also	in	a	joint	ratio	table	with	a	connecting	row	on	the	left	that	showed
the	day	(the	unit	that	linked	the	successive	ratios).	All	of	these	columns	could	be	seen	by	students	and	were	also
discussed	as	columns	from	the	multiplication	table.	A	proportion	was	any	two	ratios	from	this	story,	which	could	be
seen	as	(inter-formed	as)	two	rows	from	the	multiplication	table	and	also	from	the	linked	ratio	table.	A	Factor	Puzzle
was	a	proportion	with	one	unknown	value;	factors	of	its	rows	and	columns	could	be	identified	to	find	the	unknown
value.

Most	of	these	forms	were	very	close	to	the	cultural	maths	forms,	but	could	be	considered	as	pedagogical	in	that
they	had	something	extra	to	support	meaning	making.	Students	also	abbreviated	forms	in	problem	solving,	for
example,	by	skipping	rows	in	a	ratio	table	to	fill	in	the	second	ratio	in	a	proportion,	thereby	leading	to	the	discovery
that	they	could	just	multiply	and	did	not	have	to	write	all	of	the	intervening	rows	in	the	ratio/multiplication	table.
Students	inter-formed	all	of	the	forms	through	language	and	gesture	in	instructional	conversations	(Fuson	&
Abrahamson,	2005).	Such	inter-forming	helped	students	move	from	their	Phase	1	repeated-addition	solutions
involving	filled-in	ratio	tables	to	use	of	Factor	Puzzles	to	solve	proportions	by	multiplication	and	division	inter-
formed	by	finding	rows	and	columns	of	the	multiplication	table.	The	pedagogical	forms	support	MD&A	methods	for
the	whole-number	problems	given	at	this	age	level,	and	they	provide	a	basis	for	extending	to	the	general	unit	ratio
and	cross-multiplication	methods	needed	for	problems	with	fractions	(some	examples	are	in	Abrahamson,	2004).

We	have	only	shown	examples	of	three	major	school	maths	topics.	While	the	three-phase	model	unit	can	last	over
weeks	for	such	major	topics,	some	minor	topics	may	require	only	one	or	two	lessons	for	the	three	phases.
Geometry,	measurement,	and	data	topics	also	can	use	maths	drawings	and	MD&A	methods.	For	example,
sketching	a	rectangle	and	filling	in	the	measures	of	all	four	sides	can	help	students	find	perimeters.	When	students
can	remember	to	use	all	four	sides,	they	can	drop	the	measures	of	two	adjacent	sides	to	show	the	usual	way
perimeter	problems	are	presented.

Learning	Path	Teaching–learning	Takes	Time	and	Support

As	students	invent	support	steps	toward	making	sense	of	the	cultural	and	pedagogical	forms,	they	recruit
individual	internal	forms	that	initially	may	be	fragile	and	not	involve	any	inscribed	forms,	but	only	verbal	and
gestural	utterance,	such	as	idiosyncratic	metaphorical	constructions	(Abrahamson,	Gutiérrez,	&	Baddorf,	2012).	At
this	stage,	attentive	teachers	should	‘listen’	very	closely	(Confrey,	1991;	Davis,	1994)	and	support	these	fledgling
formulations,	because	they	may	enable	more	students	to	evoke	and	inter-form	similar	individual	internal	forms
and,	thus,	bring	the	whole	class	to	bridge	and	adapt	their	respective	individual	internal	forms	to	the	external
forms.

The	extended	inter-forming	of	coherent	pedagogical	and	cultural	maths	forms,	especially	with	the	support	of	maths
drawings	within	instructional	conversations,	allows	students	to	build	well-formed,	but	individual	networks	of
individual	internal	forms	that	allow	students	to	be	adaptive.	There	are	always	creative	student	variations
discussed	in	Phase	2	and	even	in	Phase	3.	Students	create	forms	close	enough	to	the	mathematically-desirable
and	accessible	methods	and	maths	drawings	in	Figures	1	and	2	to	be	taken-as-shared	by	their	classmates,	but
there	is	often	individual	creativity	that	adds	interest	and	depth	to	the	instructional	conversation	and	to	the
continually	inter-forming	networks	of	individual	internal	forms	for	all	class	members	including	the	teacher.

Some	mathematically-desirable	and	accessible	methods	have	extra	support	steps	that	can	be	dropped	when	they
are	no	longer	needed.	For	example,	the	partial	products	multiplication	method	in	Figure	2	was	invented	by	a	class
of	low-achieving	African–American	students	who	wanted	to	put	in	all	of	the	steps	any	student	needed.	Later	many
of	them	selectively	dropped	various	supportive	steps	(‘learner	wheels’),	just	as	students	stop	making	maths
drawings	when	they	no	longer	need	them.	Pedagogical	forms	assist	meaning-making	for	the	cultural	maths	forms
provided	these	are	actively	inter-formed	within	the	student’s	network	of	individual	internal	forms.	At	some	point	for
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each	student,	the	pedagogical	form	no	longer	needs	to	be	used	because	the	student’s	individual	internal	forms
stimulate	that	meaning-in-action	for	the	cultural	maths	forms	(e.g.	Abrahamson,	2002).

The	class	learning	path	simplifies	the	teacher’s	task	to	something	that	teachers	perceive	as	do-able,	especially	if
supported	by	a	learning	path	programme.	The	teacher’s	task	is	not	the	commonly-perceived	reform	task	of
celebrating	every	student’s	methods	and	continually	eliciting	more	ways.	This	can	be	overwhelming	to	teachers
who	think	there	are	as	many	‘different’	methods	as	the	number	of	students	(Murata,	2013).	We	instead	use	a	big
picture	of	the	three	levels	of	solution	methods	shown	in	Table	1:	Level	1	basic	and	slow,	Level	2a	MD&A,	and	Level
2b	mathematically-desirable	and	not	accessible.	These	levels	help	teachers	see	certain	methods	as	minor
variations	of	each	other	and	to	place	these	within	the	phases	of	teaching	a	topic.

Learning	path	teaching–learning	requires	coherent	external	forms

The	teacher	and	(student)	teachers	‘tune’	learners’	individual	internal	forms	toward	the	external	forms	and	toward
the	more-advanced	methods	with	the	assistance	of	the	pedagogical	forms	(similar	to	diSessa’s	tuning	toward
expertise	in	physics,	1993).	Pedagogical	forms	need	to	be	selected	or	designed	to	illuminate	the	central
mathematical	aspects	of	the	cultural	maths	forms	by	their	affordances	and	constraints	(their	attunements,	Greeno,
1998).	Such	tuning	takes	time	and	much	inter-forming	by	gesture	and	language	by	the	teacher	and	students.
Students’	networks	of	individual	internal	forms	have	layers	from	less-advanced	to	more-advanced	individual-
internal-forms-in-action,	and	they	may	fold	back	(Martin,	2008;	Pirie	&	Kieren,	1994)	to	a	lower	level	to	inter-form
and	make	more	meaningful	a	higher	level.	Because	mathematics	builds,	the	situational	and	pedagogical	forms	need
to	be	coherent	so	that	children	can	move	among	their	layers	of	understanding	easily.	Our	situational	diagrams	that
work	across	all	kinds	of	quantities	is	one	such	example.	The	use	of	the	same	quantity	drawings	for	multidigit
numbers	in	addition	and	in	subtraction	is	another	example.	Methods	in	the	middle	that	can	extend	from	children’s
invented	methods	and	relate	to	difficult	formal	maths	methods	require	careful	analysis	and	classroom	research	to
reach	coherence	for	teachers	and	for	children.	Pedagogical	forms	such	as	secret-code	cards	(layered	cards	that
show	374,	but	with	300	under	70	under	the	4)	that	compensate	for	difficult	cultural	forms	such	as	English	words	for
teens	and	tens	are	an	important	part	of	such	analysis	and	research	(see	National	Council	of	Teachers	of
Mathematics,	2011).

The	extensive	and	excellent	Dutch	programme	of	research	on	Realistic	Mathematics	Education	(e.g.	Gravemeijer,
1994;	Streefland,	1991)	that	extends	Freudenthal’s	theory	(e.g.	Freudenthal,	1983)	shares	many	features	with	the
model	proposed	here.	Our	model	does	suggest	a	further	examination	of	the	coherence	of	that	programme’s
situational	and	pedagogical	‘models	of’	within	and	across	topics,	and	raises	the	possibility	that	students	might
move	to	Phase	2	general	methods	in	the	middle	more	rapidly.

Using	research	on	student	cognition	for	mathematics	education

Initiatives	have	arisen	in	many	countries	to	adapt	mathematics	education	to	reflect	the	research	on	student
learning	and	to	prepare	students	for	the	demands	of	lives	infused	with	technology.	Many	of	these	initiatives	have
reflected	the	long-term	perceived	conflict	between	understanding	and	fluency,	with	emphases	either	on	student
inventing	of	methods	or	on	traditional	teaching	of	formal	methods	by	teacher	telling	and	showing	(this	conflict	has
been	termed	the	‘maths	wars’	in	the	USA	and	some	of	these	over-emphases	are	discussed	in	Fuson,	2009).	We
have	seen	here	that	there	is	a	research-based	middle	ground:	students	can	understand	general	methods	and	do
not	have	to	be	limited	to	special	methods	that	arise	from	particular	numbers	or	from	particular	situations.	This	does
raise	questions	about	what	seems	to	be	a	strong	emphasis	on	such	special	methods	in	the	National	Numeracy
Strategy	in	English	primary	schools	(Askew	&	Brown,	2001;	Vollaard,	Rabinovich,	Bowman,	&	van	Stolk,	2008).	A
related	emphasis	in	some	countries	on	mental	computation	likewise	seems	too	strong,	especially	if	the	methods
cannot	be	written	down	by	students.	Such	methods	are	often	restricted	to	smaller	numbers	and	do	not	generalize
easily	(e.g.	methods	of	adding	on	or	back	for	multidigit	numbers;	for	more	discussion	of	limitations	of	such	methods,
see	National	Council	of	Teachers	of	Mathematics,	2011;	Fuson	&	Beckmann,	2012/2013).	Our	experience	is	that
children	are	empowered	by	general	methods	they	can	understand	and	explain.	Recording	methods	using	place
value	notation	is	a	core	aspect	of	mathematics	and	can	be	done	as	early	as	age	7	if	approached	in	the	ways
outlined	in	our	model.	However,	it	is	also	important	to	examine	the	form	of	the	written	methods	that	are	to	be	taught
because	there	may	be	variations	that	are	easier	for	students	to	understand	and/or	to	carry	out.
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A	recent	such	initiative	in	the	United	States	reflects	this	middle	ground	and	heavily	uses	the	research	on	cognition.
There	has	been	a	special	difficulty	in	the	United	States	because	different	teaching/learning	standards	are	adopted
by	each	of	the	50	states.	There	has	been	huge	variation	in	the	standards	across	states	that	led	to	characterizing
the	maths	goals	in	the	United	States	as	‘a	mile	wide	and	an	inch	deep’	(Schmidt,	McKnight,	&	Raizen,	1997).
Textbooks	were	enormous,	and	massive	amounts	of	time	and	energy	were	spent	on	what	to	teach	instead	of	how
to	teach	it	well.	The	new	coherent	teaching/learning	standards,	the	Common	Core	State	Standards	(CCSSO/NGA,
2010),	are	based	on	research	and	were	adopted	by	most	states.	The	standards	reflect	research	and	curricula	from
around	the	world,	and	are	the	result	of	an	intensive,	prolonged	feedback	and	revision	period	from	many	sources.
Thus,	they	reflect	a	negotiated	balance	of	views	about	how	to	fit	together	learning	paths	in	various	domains.

For	example,	the	Common	Core	State	Standards	operations	and	algebraic	thinking	standards	lay	out	an	ambitious
learning	path	with	word	problem	types	as	the	bases	for	understanding	of	operations	(+,	–,	×,	÷).	The	standards
identify	grade-appropriate	levels	at	which	students	work	with	the	various	problem	types	and	with	unknowns	for	all
three	of	the	quantities.	The	standards	appropriately	specify	that	students	use	drawn	models	and	equations	with	a
symbol	for	the	unknown	number	to	represent	the	problem	(situation	equations,	such	as	☐	+	6	=	14).	Thus,	from
grade	1	on	students	will	have	crucial	experience	with	the	more	difficult	algebraic	problems	(those	in	which	the
situation	equation	might	vary	from	a	solution	equation,	such	as	6	+	☐	=	14	or	14	–	6	=	☐	for	the	situation	equation
☐	+	6	=	14).

The	Common	Core	State	Standards	drew	from	design-research	and	learning	path	research	to	include	within
standards	the	requirement	that	students	are	to	use	visual	models,	relate	these	to	the	problem	situation	or	to	the
steps	in	a	computation,	and	explain	the	reasoning	used.	For	most	numerical	topics	this	meaning-making	phase	is
one	or	two	years	ahead	of	the	standard	that	calls	for	fluency,	thus	using	phases	that	extend	over	years.	These
Phase	2	methods	discussed	above	and	shown	in	Figure	2	meet	the	more-advanced	Common	Core	State	Standards
that	students	are	to	develop,	discuss,	and	use	efficient,	accurate,	and	generalizable	methods	including	the
standard	algorithm	(for	more	see	Fuson	&	Beckmann,	2012/2013).	For	more	about	features	of	these	standards	see
Fuson	(2012).

The	Common	Core	State	Standards	emphasize	the	Maths	Talk	aspect	of	teaching-learning	with	eight	Mathematical
Practices	that	can	be	summarized	in	four	pairs	of	practices:

•	Math	Sense-Making	(MP	1	and	6):	make	sense	and	use	appropriate	precision.

•	Math	Structure	(MP	7	and	8):	see	structure	and	generalize.
•	Math	Drawings	(MP	4	and	5):	model	and	use	tools.

•	Math	Talk	(MP	2	and	3):	reason	and	explain.

This	can	be	summarized	as:	Do	math	sense-making	about	math	structure	using	math	drawings	to	support	math
talk.

General	Conclusion	and	Call	for	Future	Research

In	conclusion	we	assert	that	it	is	the	responsibility	of	a	research-based	maths	programme	to	provide:

(a)	In	Phase	1	the	situations	or	pedagogical	forms	(especially	maths	drawings)	to	stimulate	students’	and
Teacher’s	individual	internal	forms	meaningfully	toward	the	externals	forms,	and	to	have	stimulated	and
practiced	well-formed	enough	individual	internal	forms	in	earlier	units	before	reaching	Phase	1	for	a	topic.
(b)	In	Phase	2,	the	curriculum	must	provide	to	teachers	research-based	MD&A	methods	and	pedagogical
and/or	situational	forms	to	assist	students	to	build	well-formed	individual	internal	forms	that	can	assist	them	in
using	meaningful	cultural	maths	forms.
(c)	Pedagogical	and	formal	maths	external	forms	must	be	explained	enough	in	the	programme	so	that
teachers	can	assist	students	to	progress	in	their	learning	paths.

Point	(c)	is	important	because	many	teachers	have	not	had	sufficient	opportunity	to	learn	maths	meaningfully
themselves	or	to	learn	about	student	learning	paths.	They	need	the	assistance	of	the	coherent	supports	within
Phase	1	and	Phase	2	to	form	their	own	individual	internal	forms	to	teach	with	meaning.	In	our	experience,
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teachers	enthusiastically	welcome	the	opportunity	to	learn	meaningful	maths	and	to	use	a	‘teach	while	learning’
approach.	One	group	of	pilot	teachers	articulated	such	feelings	by	calling	the	Children’s	Math	Worlds	programme
‘maths	therapy	for	teachers.’

Teachers’	experiences	vary	considerably	on	the	whole	continuum	of	experiences	from	very	constructivist	to
traditional.	The	Class	Learning	Path	Model	enables	any	Teacher	to	begin	from	initial	strengths	s/he	has	and	to	build
new	teaching–learning	competencies	as	s/he	moves	along	her/his	own	learning	path.	All	teachers	find	phases
within	which	they	initially	feel	comfortable.	They	all	gain	confidence	and	knowledge	from	the	learning	supports	in
Phase	2.	As	they	experience	the	Class	Learning	Path	Model	of	teaching,	they	build	competencies	and
understandings	(individual	internal	forms	about	maths	and	about	teaching)	that	enable	them	to	use	a	more
balanced	approach	to	teaching	in	the	following	year.

The	cultural	maths	forms	for	a	topic	are	fairly	well	defined	for	a	given	culture,	and	there	is	relatively	little	variation
in	these	around	the	world.	What	is	and	can	be	varied	to	affect	learning	are	the	situations,	pedagogical	forms
including	especially	maths	drawings	and	MD&A	methods,	and	the	sequence	of	problems	and	activities.	More
research	and	dialogue	about	the	external	teaching	forms	(situations,	pedagogical,	and	cultural	maths	forms)	would
be	beneficial.	This	dialogue	needs	to	focus	on	the	mathematical	aspects	of	the	learning	paths	(e.g.	which	methods
are	mathematically	desirable?),	as	well	as	on	data	about	them	(e.g.	How	did	the	pedagogical	forms	work?	How
could	they	be	made	more	coherent	across	topics	and	grades?).	In	many	countries,	an	initiative	to	modify	difficult
forms	of	standard	algorithms	and	other	solution	methods	to	mathematically-desirable	forms	more	adapted	to
student	cognizing	would	make	mathematics	education	more	successful	and	help	students	and	teachers	believe
that	mathematics	is	understandable.
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