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Abstract 

Building Algebra One Giant Step at a Time: Toward a Reverse-Scaffolding Pedagogical 
Approach for Fostering Subjective Transparency Through Engineering Levels of Interaction 

With a Technological Learning Environment 
 

by 

Kiera Naomi Phoebe Chase 

Joint Doctor of Philosophy in Special Education  
and the Designated Emphasis  

in 
New Media 

with San Francisco State University 
 

University of California, Berkeley 

Professor Dor Abrahamson, Chair 
 
The project brings together and studies the intersection of three ‘big’ ideas from 

educational research and practice. Firstly, this project is built on the constructivist assumption 
that meaningful learning occurs when students interact with educational materials that occasion 
problem solving and reflection. Secondly, this project elaborates on the theoretical construct of 
transparency by tracking its subjective development. Finally, the project reexamines the notion 
of scaffolding – the socio-cultural idea that novices receive expert intervention in the form of 
supports until mastery is achieved – specifically scaffolding that enables an authentic discovery-
based learning experience. This work occurs within the context of early algebra. The story of 
learning algebra in schools is often told as the challenge of progressing from arithmetic to 
algebra. A main character in this story is the “=” sign or, rather, students’ evolving meanings for 
this sign (Herscovics & Linchevski, 1996). The balance metaphor is undoubtedly the most 
common visualization of algebraic propositions. Still, students’ persistent difficulty 
in transitioning from arithmetic to algebra suggests that the balance metaphor may not be the 
ideal method for building transparency for a relational understanding of equations (Jones, Inglis, 
Gilmore, & Evans, 2013). Therefore, this study investigates an alternative approach. Using a 
technological-enabled constructivist learning activity, Giant Steps for Algebra, students construct 
models of realistic narratives. As they build a virtual model of a problem situation, students 
discover technical principles for assuring the model’s fidelity to the situation. These construction 
heuristics, are precisely the conceptual foundations of algebra, and the activity’s situated 
intermediary learning objectives (SILOs). To enable to gradual development of transparency for 
Giant Steps, at each interaction level, the student discovers a SILO, and then the technology 
takes over by automatizing that SILO, thus freeing the student for further discovery. This activity 
architecture is called reverse scaffolding, because the tools relieve learners from performing 
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what they know to do, as opposed to what they do not know to do. In a quasi-experimental 
evaluation study (Grades 4 & 9; n=40), reverse-scaffolding students outperformed baseline 
students, for whom the technical features were pre-automatized upfront, on measures of 
transparency for the SILOs. I thus conclude that discovery-based learning activities are 
advantageous, and that reverse-scaffolding technological activities can level the gradual 
development of subjective transparency. 

 
Keywords: Discovery-based learning, Transparency, Scaffolding, Reverse-Scaffolding, Algebra. 
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CHAPTER 1: Introduction 

Over a century ago Dewey wrote Democracy and Education (1916), in which he 
advocated for instructional practices that focus on providing meaningful experiences. He wrote: 

 
careful inspection of methods which are permanently successful in formal education, 
whether in arithmetic or learning to read, or studying geography, or learning physics or a 
foreign language, will reveal that they depend for their efficiency upon the fact that they 
go back to the type of the situation which causes reflection out of school in ordinary life. 
They give the pupils something to do, not something to learn; and the doing is of such a 
nature as to demand thinking, or the intentional noting of connections; learning naturally 
results. (Dewey, 1916/1944, p. 154) 
 
Fast-forward to the work of Piaget who wrote “knowledge proceeds neither solely from 

the experience of objects nor from an innate programming performed in the subject but from 
successive constructions" (Piaget, 1977, p. v). Knowledge is thus built through recursive 
interaction with the world. Views inspired by Piaget’s genetic epistemology, such as 
constructivist pedagogy (Kamii & DeClark, 1985; Warrington & Kamii, 1998) or radical-
constructivism (von Glasersfeld, 1983), as well as its adaptations to technological environments 
(Harel & Papert, 1991; Papert, 1980) harken back to aspects of Dewey’s vision, most 
prominently the notion that the learner should not be a passive recipient of new knowledge but 
an active participant in constructing his or her own new understanding. As expressed by 
Ackermann (2004), “ideas get formed and transformed when expressed through different media, 
when actualized in particular contexts, when worked out by individual minds” (original italics, 
pp. 20-21). Several mathematics education researchers have taken up this approach. Consider the 
Dutch school of Realistic Mathematics Education (Freudenthal, 1968, 1973, 1983; Gravemeijer, 
1994; van den Heuvel-Panhuizen, 2003). One could further mention the monumental work of 
Zoltan Dienes (1916-2014), Ephraim Fischbein (1920-1998), Caleb Gattegno (1911-1988), and 
Richard Skemp (1919-1995) (for a review, see Reid, 2014). 

For those of us who design and study technology-based artifacts for teaching and 
learning, the most notable extension came from the work of Seymour Papert. His oeuvre 
contributed a theory of learning called constructionism (Papert, 1991b). Papert builds on the 
constructivist foundation adding the notion that new knowledge is constructed while the learner 
actively builds meaningful artifacts. Consequently, the resources that are strewn across the 
makers ‘work-bench,’ and the contexts in which ideas are actualized, influence the constructor’s 
experience and their learning. And designers hope and pray that their designs are a positive 
influence and not peer-pressuring the learner into a narrow understanding. 

Thirty-five years after Seymour Papert’s emphatic assertion that students learn by 
constructing (Papert, 1980) we are perhaps making some gains towards making this a reality in 
Science Technology Engineering and Mathematics (STEM) classrooms. These approaches reject 
the standard instructional sequence wherein the teacher demonstrates a particular set of 
procedures, and then students practice these procedures. Schwartz, Chase, Oppezzo, and Chin 
(2011) call this practice “Tell-and-Practice.” Catrambone (1998) succinctly characterizes the 
concerns associated with this approach, “Students tend to memorize the details of how equations 
are filled out rather than learning the deeper, conceptual knowledge” (p. 356). The alternatives to 
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the “Tell-and-Practice” approach essentially flip the script and are designed to enable the 
students to solve problems in whatever ways they can – inventing procedures (Roll, Aleven, & 
Koedinger, 2011), discovering critical features of the problem, analyzing their peers’ work 
(Kapur, 2010) – and only then receiving explicit instruction. These problem-, project-, inquiry, 
and discovery-based approaches each uniquely attempts to foster learning experiences like those 
described in the introductory quote, experiences where the learner actively constructs his or her 
understanding through interactions with specific resources.         

Over the last several decades there has been a significant amount of research to establish 
the validity and effectiveness of these problem-, project-, inquiry and discovery-based 
approaches. Findings suggest some specific cognitive, theoretical, and pedagogical implications. 
Firstly, having an opportunity to try something out before receiving explicit instruction, while 
placing a higher cognitive load on the learner’s working memory, results in better understanding, 
multiple solution strategies, and improved transfer of knowledge to new situations. Secondly, 
simply watching a peer attempt to problem-solve, or examining a worked example, is not as 
effective as engaging in the problem oneself (Kapur, 2014). Thirdly, where an artifact’s structure 
instantiates content-critical functions the user may not see these contributions and therefore be 
unable to cognitively incorporate these into the emerging schema (Chase & Abrahamson, 2013). 
Therefore resources and materials designed to support a constructionist learning experience must 
be transparent to the learner (Hancock, 1995; Meira, 1998). 

An artifact is transparent when its content-relevant features that measure, quantify, 
calculate, convert, or otherwise manipulate information as intermediary steps toward solving a 
given problem are salient to the user. The theoretical construct of transparency captures relations 
between, on the one hand, artifacts inherent to a cultural practice, and, on the other hand, a social 
agent’s understanding of how features of these artifacts mediate the accomplishment of particular 
practices (Meira, 1998). In general, cognitive artifacts bear information structures, logical 
relations, and activity constraints that offload intentionality onto external features (Kirsh, 2010; 
Martin, 2009). However, artifacts that are used to foster content learning should be transparent, 
because tinkering and figuring out how they work is tantamount to understanding the content 
(Pratt & Noss, 2010; Wilensky & Reisman, 2006). Therefore, whereas industrial designers often 
wish to obscure the workings of artifacts in the service of efficient use, pedagogical designers 
might choose to encumber use in the service of learning. 

Encumbered interaction and the associated cognitive load is one of the major criticisms 
of the constructionist agenda and inquiry-, discovery-based instructional approaches. Increasing 
the cognitive demand with minimal guidance can result in students generating faulty ideas that 
are hard to override. Additionally, the whole process is time consuming, students do not have 
opportunities to practice and elaborate on solution strategies, and transferring knowledge to new 
situations can be impacted (Kirschner, Sweller, & Clark, 2006; Klahr & Nigam, 2004). So as we 
turn towards a future in which technology will play a central role in instructional settings, 
designers are challenged to conceive technology-based discovery-learning interfaces that enable 
the authentic construction of new ideas, opportunities to practice and elaborate discoveries in 
new problem contexts, and most importantly provide appropriate support and guidance. 

So how do we do this? Roll et al. (2011) write, “Students who invent gain the knowledge 
of key requirements of formalisms, of reasons for these requirements, and of mathematical tools 
that satisfy (and fail to satisfy) these requirements” (Roll et al., 2011, p. 2829). How, then, do 
designers proceed to create inquiry-based interfaces that enable students to invent these 
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mathematical tools? Additionally, discovery-based activities are conceptualized as providing 
opportunities for students to invent and articulate their solutions, as well as build knowledge that 
is consistent with a particular domain (Hammer, 1997). This creates tension between “respecting 
children as mathematical thinkers” and helping them to “acquire particular tools, concepts, and 
understanding” (Ball, 1993, p. 384). Therefore, how can technology-based resources help to 
bridge this gap? Lastly, what heuristic principles support the design of technology-based 
interfaces that enable the learner to discover underlying domain specific structures and 
procedures? What does scaffolding this discovery look like? 

This dissertation project seeks to pursue the answers to the above questions by addressing 
the general design problem of scaffolding discovery-based content learning. The project is 
centered on a technologically implemented early-algebra modeling activity, Giant Steps for 
Algebra (GS4A). The central goals of this research project are to answer the following questions: 

 
1.     What are effective design heuristics for creating  discovery learning activities? How might 

such activities avail of technological functionalities? 
2.     In particular, is it possible to create a microworld based on constructionist principles, wherein 

students learn mathematics content through building artifacts? Can a learning design balance 
constructionist principles with specific curricular goals? What particular activity architecture 
would achieve this balance? 

3.     To the extent that the activity is effective, how exactly does building artifacts lead to content 
learning? 

 
The project brings together and studies the intersection of three ‘big’ ideas from 

educational research and practice. The first, as described above, is the constructivist approach to 
learning. More specifically, this project is built on the assumption that meaningful learning 
occurs when the student interacts with educational materials that occasion problem solving and 
reflection. Secondly, the project elaborates on the theoretical construct of transparency by 
tracking its subjective development. Finally, the project reexamines the notion of scaffolding -- 
the socio-cultural idea that novices receive expert intervention in the form of supports until 
mastery is achieved. Arguably, constructivism, transparency, and scaffolding make for strange 
bedfellows, given that it is not at all clear how an expert might offer supports that do not give 
away solutions. In any case, such scaffolding might be different from what the word has come to 
imply. As such, the crux of this project is to design and investigate a new approach to scaffolding 
that enables an authentic discovery-based learning experience. 

Below, I briefly introduce the theoretical positioning for this study. I discuss the 
historical emergence of scaffolding as a pedagogical approach and elaborate on how scaffolding 
might be reinvented so as to serve a constructivist approach to learning. I then elaborate on the 
domain knowledge that this design addresses, early algebra. 

 
1.1 Theoretical Positioning 

1.1.1 Scaffolding.  

Regardless of their epistemological commitments, scholars of pedagogy who speak of 
scaffolding appear to agree that novices to a disciplinary domain of practice need some form of 
support to make progress (Wood, Bruner, & Ross, 1976). Experts help novices learn by creating 
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inclusive conditions that enable the novices gradually to develop skills and knowledge relevant 
to the practice (Lave & Wenger, 1991). Such common cultural activity of deliberately fostering 
learning is often perceived metaphorically as “a kind of ‘scaffolding’ process that enables a child 
or novice to solve a problem, carry out a task or achieve a goal, which would be beyond his 
unassisted efforts” (Wood, Bruner, & Ross, 1976, p. 90). Its ecological authenticity 
notwithstanding, the participatory view of education has historically jarred with constructivist 
philosophy of knowledge, by which meaningful learning is the process of subjectively 
reinventing cognitive structures for effectively enacting cultural practice (von Glasersfeld, 1983). 
Are these seminal perspectives on education terminally incompatible? How can an instructor 
scaffold an individual student’s personal construction of cultural-historical knowledge? 
Specifically, does not simplifying a task for the child or co-enacting the task with a child rob that 
child of critical opportunity to reinvent those very operations and structures they were thus 
relieved of (Freudenthal, 1971)? 

Not necessarily. For example, Abrahamson (2012a) offered a sociocultural interpretation 
of guided reinvention. The interpretation relied on a theoretical distinction between a solution 
process, such as enacting the combinatorial analysis of a novel random generator, and the 
product of that process, such as the resulting visual display of the random generator’s probability 
sample space. Grade 4 – 6 participants in Abrahamson’s study, who had argued that the solution 
process was arbitrary and counterintuitive, nevertheless identified its product as meaningful. 
They were then willing retroactively to accept the process by which this product was created. 
What students reinvented in this activity was the normative mental construction of the completed 
product—they figured out how to visualize the mathematical product as affirming their 
perceptual judgment for the situation that this product was said to model. Abrahamson therefore 
argued that students are able to reinvent received cultural forms, but only if the learning 
environment enables them to experience parity between their naïve and mediated inferences or 
actions. Abrahamson’s project demonstrated his “product-before-process” design principle and 
as such offered one way of reconciling constructivist and sociocultural implications for 
pedagogy. Yet we remain with the question of whether the notion of scaffolding per se is still 
useful or even tenable for envisioning, building, and conducting mathematics education. 

The didactical metaphor of scaffolding has become so ubiquitous in the rhetoric of 
education researchers and practitioners, that its meaning has become diffuse, its theoretical 
rationale unquestioned, and its pedagogical operationalization vague (Pea, 2004). One of the 
objectives of this project, therefore, is to offer a constructivist critique of scaffolding—a critique 
that maintains the formative role of cultural agents in shaping learning experiences yet 
underscores the essential role of learners in reinventing cultural practice. Stemming from the 
critique is a proposal to completely rethink standard or “direct scaffolding” and practice instead 
what could be called “reverse scaffolding.” As I explain and demonstrate, to direct-scaffold 
instruction is to support learners by enacting for them what they are not yet able to do, whereas 
to reverse-scaffold instruction is to support learners by enacting for them only what they have 
already figured out for themselves. The study presents and discusses findings from an empirical 
study that suggest the potential of reverse scaffolding as a pedagogical design framework for 
meaningful mathematical learning. In particular, results from comparing the study participants’ 
learning gains across instructional conditions of reverse-scaffolding and a control condition of 
the same experimental unit indicate that reverse scaffolding is more effective. 
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As such, this study presents and evaluates a radical variation of scaffolding called reverse 
scaffolding. Reverse scaffolding adheres to a traditional definition of scaffolding as cultural 
agents both structuring for learners critical aspects of disciplinary practice and participating in 
the enactment of core activities. And yet, the reverse-scaffolding instructor introduces these co-
enactment supports into the students’ activity only once the students have struggled to construct 
these critical aspects of enactment for themselves. Reverse-scaffolding activities thus provide 
supports for the enactment only of what students already know to do, rather than what they do 
not yet know to do, thus essentially reversing the scaffolding didactical paradigm. 

The reverse-scaffolding thesis emerged in the context of conducting and reflecting on an 
educational design-based research project that investigated an innovative activity for early 
algebra (Abrahamson, Chase, Kumar, & Jain, 2014). This study reports on a quasi-experimental 
research design subsequently conducted to compare learning outcomes gained respectively under 
reverse-scaffolding and control instructional conditions. As I explain in the next section, the 
pedagogical rationale rests on the theoretical construct of transparency. 

 
1.1.2 Transparency.  

Transparency captures novices’ understanding of how features of artifacts they are using 
function in the accomplishment of situated goals (Meira 1998). Often cited in the case of 
mechanical artifacts, transparency of cultural artifacts obtains equally in the case of procedures 
involving the handling of non-substantive objects, such as protocols for generating and 
manipulating symbolic notation in the solution of algebraic problems. Each representational 
element of an algebraic proposition has particular properties and serves particular functions 
within the algebraic system. This system of meanings -- latent structures, relations, and functions 
of algebraic propositions -- must become transparent to the learner.  

Transparency is the key hypothetical construct of this dissertation. The design of 
educational materials and activities as well as the design architecture of reverse scaffolding were 
all oriented on student development of subjective transparency for the algebra artifact. And the 
empirical study reported herein evaluated the Giant Steps for Algebra design by operationalizing, 
coding, and measuring students’ development of transparency for algebraic solution procedures. 

In order to assess learning as the development of subjective transparency, I first need to 
operationalize what transparency would mean in considering the target concept of early algebra. 
I will discuss how the operationalization of transparency led to the development a new 
epistemological construct, “situated intermediary learning objectives” (SILO). These SILOs spell 
out the knowledge elements of subjective transparency for algebra solution procedures. SILOs 
are what students understand when one says that they understand early algebra. And yet by 
articulating students’ emerging knowledge as a delineated set of psychological constructions, I 
gained greater traction also on the rich empirical phenomena of multimodal mathematical 
discourse that includes student and tutor speech, gesture, and the production of concrete and 
virtual objects. As such, operationalizing transparency in the form of the hypothetical construct 
of SILOs enabled me to visualize transparency—I could point out indications of each SILO in 
the video data of tutorial interactions and evaluations as well as in the artifacts that students 
generated as they engaged in the activities, and I would thus also reflect on the apparent absence 
of particular SILOs for particular students. 

 



 

 6 

1.2 A Design-Based Research Study of Early Algebra 

1.2.1 Design problem.  

Within the scope and sequence of mathematics curricula, the transition from arithmetic to 
algebra presents cognitive challenges to many students (Herscovics & Linchevski, 1994; Sfard, 
1994), so that numerous students struggle to pass algebra. Failing algebra, in turn, impedes 
students’ progress within the educational system, so much so that Algebra has been referred to as 
the ‘gate-keeper’ course for college admittance and completion (Moses & Cobb, 2001) Thus, 
much is at stake for US students who are unable to transition toward algebraic notions, notations, 
and reasoning (Jitendra, Star, Dupuis, & Rodriguez, 2013). 

 
1.2.2 Design rationale.  

Perhaps the issue with algebra, I conjecture, is not so much with curricula and instruction 
as much as with a more core element of this subject matter content, namely the most 
fundamental imagery and notions by which the content is first introduced to students, even prior 
to the introduction of the its symbol system. This conjecture led to an investigation of these 
imagery and notions, to ask whether they implicitly help or hinder a deep understanding of the 
content. Followed by the search for alternative imagery and notions and building an empirical 
evaluation program around an experimental introductory algebra unit that I designed and 
implemented. 

A convergent body of research on algebra learning suggests that one challenge in the 
passage from arithmetic to algebra is the evolving meanings of the equal (=) sign (Filloy & 
Rojano, 1989; Herscovics & Linchevski, 1994; Radford, 2003; van Amerom, 2003). In 
arithmetic thinking the equal sign is most often conceptualized operationally such that its 
syntactic function is understood as an imperative to arrive at a solution, for example, the student 
interprets “2 + 3 = ___” as an imperative to determine the sum, “5” (Carpenter, Franke, & Levi, 
2003; Sáenz-Ludlow & Walgamuth, 1998). And yet this conceptualization of the “=” sign is 
absent of a relational sense, by which the two sides of the equation are somehow similar to each 
other (Jones, Inglis, Gilmore, & Dowens, 2012)—a sense that is pivotal for conventional 
treatment of algebraic equations (Knuth, Stephens, McNeil, & Alibali, 2006). The implicit carry-
over of meanings for “=” from traditional arithmetic exercises to the conceptualization of 
algebraic expressions should thus be regarded as one source of the cognitive challenge algebra 
presents for many learners. 

 
1.2.3 Design process.  

The design work began with a conjecture associating students’ poor understanding of 
algebra content with the pervasive metaphor underlying their conceptualization of algebraic 
equations. However, before designing an alternative model I had first to analyze the current, 
twin-pan model. Namely, the conventional metaphor for algebraic equivalence is that of balance, 
often elicited through invoking prior interactions with relevant cultural artifacts such as a balance 
scale, teeter-totter (seesaw), etc. (see Figure 1). 
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Figure 1. “3x + 14 = 5x + 6” on a balance scale. 

 
A strength of the equivalence-as-balance conceptual metaphor (see Lakoff & Núñez, 

2000) is in grounding elements of formal algorithms with symbol manipulation, such as, “We 
remove 3x from both sides of the equation,” in informal actions upon figural or material elements 
of familiar artifacts, such as, “We keep it balanced by taking off 3 red squares from each side.” 
The balance metaphor grounds procedural operations isomorphically, that is, whatever operation 
you perform on one side of the balance scale you must perform also perform on the other side. 

Vlassis (2002) explored the implications of using the twin-pan scale model on students’ 
development of algebraic problem-solving skills. The results suggested that algebraic problem-
solving could be categorized in two ways, either arithmetic or non-arithmetic. Arithmetic 
problems are those that can be solved using guess-and-check strategies and contain a variable on 
only one side of the equation. Non-arithmetic problems, on the other hand, are problems that 
contain the variable on both sides of the equals sign. Non-arithmetic problems can be further 
subdivided into two subcategories, either attached to the model (in this case the balance scale) or 
detached from the model. In the case of a non-arithmetic problem, Vlassis (2002) demonstrated 
that problems that are attached to the model could be characterized as pre-algebraic in the sense 
that the problem-solvers use the model to approximate formal transformations. Problems 
characterized as detached from the model are problems that contain negative integers, negative 
solutions, or more than one variable. The study’s findings suggest that formal algebraic 
manipulations were the only ways that problem-solvers could solve these problems. Vlassis 
concluded that students might be said to understand algebra only when they “[understood] 1) the 
principle of transformations in equivalent equations (performing the same operation on both 
sides), 2) having extended their numerical range with negative integers and 3) understanding the 
letter as an unknown” (p. 355). The balance model is only a useful representation for 
accomplishing the first of these, but not the second and third. Based on this finding it seems that 
there is a need for alternative models to represent algebraic equations, and specifically models 
that instantiate negative integers and the manipulation of variables. 
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1.2.4 Design precedence.  

Dickinson and Eade (2004) used the number line as diagrammatic form for plotting linear 
equations. Their conjecture was that by engaging the learner in a more familiar mathematical 
representation educators could take advantage of the learner’ prior knowledge of number systems 
and previously established formal algorithms. In Figure 2 we see the illustration of the number-
line instantiation for “3x + 14 = 5x + 6.” Note that the left-hand expression of the symbolic 
equation is mapped above the line, whereas the right-hand expression is mapped below the same 
line, with one-to-one correspondences between linear extents of respective variable quantities 
(the mirrored x’s index the same intervals subtending between marks). Further note how this 
diagram “discloses” that 2x + 6 = 14 and, down the line, that 2x = 8, so that x = 4. It appears that 
this construction of the algebraic equation is more conducive to diagrammatic reasoning (C. S. 
Peirce - see Bakker & Hoffmann, 2005, p. 334) than the balance model, possibly because the 
concretization of corresponding symbols has been pre-aligned for visual inspection, thus 
supporting quantitative reasoning and inference. 

 

 
Figure 2. Number-line representation of "3x + 14 = 5x + 6" (image taken from Dickenson and 

Eade [2004]). 
 

The cognitive operations demanded by this form of algebraic reasoning are different from 
moving symbols across the equal sign (Goldstone, Landy, & Son, 2010; Wittmann, Flood, & 
Black, 2013) and therefore bear different pedagogical affordances. More specifically, Dickinson 
and Eade (2004) found that when participants matched the variables across the top and bottom of 
a number line, they were able to quickly see relevant similarities and differences both within- 
and between the equivalent expressions. It thus appeared that displaying an algebraic system of 
quantitative relations in this particular diagrammatic system was a means of enabling students to 
visualize the relationships between variable and integers. The cognitive task of comparing and 
contrasting that students used seems inherently different to performing two separate tasks (such 
as removing 3x from both sides of the equation). The former relies on affordances of the enactive 
landscape (Kirsh, 2013) and visual thinking (Arnheim, 1969). The latter relies on algorithmic, 
decontextualized knowledge of how the algorithm is meant to work. Finally, Dickinson and Eade 
(2004) emphasized that the strength of their method is in creating greater accessibility for early 
algebra learners—the method should be regarded as transitional toward meaningful application 
of standard symbol-based algorithm for more complex equations. 
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1.2.5 Design solution.  

Using the number-line model for algebraic propositions, I developed a computer-based 
discovery-learning activity for algebra, called Giant Steps for Algebra (GS4A). The GS4A 
project seeks to investigate the potential of a new pedagogical approach to constructing algebraic 
transparency. The number-line visualization of algebraic equivalence appears to facilitate an 
offloading of source information onto the diagram’s inherent figural constraints. Consider the 
algebraic proposition “3x + 14 = 5x + 6,” in this model, we can arrive at the solution, x = 4, by a 
sequence of visual deductions. We conjectured that the number-line model therefore bears 
greater potential, as compared to the balance-scale model, for students to develop subjective 
transparency of algebra situations. In particular, the spatial features of the number-line model 
render highly salient the logical relations between variable and integers, both within- and 
between expressions. We used the number-line model in designing our learning activity. GS4A 
is a situation-based model (Walkington, C., Petrosino, A., & Sherman, M., 2013). Per the 
embodied-design framework (Abrahamson, 2009, 2012b) GS4A seeks to engage and leverage 
students’ tacit knowledge about simple ambulatory motion and spatial relations. In the GS4A 
activity, students are tasked with finding buried treasure, see Figure 3. 

 
A Giant walked 3 steps and then 

another 2 meters. She buried the treasure. 
On the next day, she wanted to bury more 
treasure in exactly the same place, but she 
was not sure where that place was. She 
walked 4 steps and then, feeling she’d gone 
too far, she walked back one meter. Yes! 
She found the treasure! 

 

Figure 3. A sample GS4A narrative (on the left) and its model (on the right). On Day 1, above 
the line, and Day 2, below the line, the giant travels from the flag. Red loops represent giant 

steps, green loops represent meters. 
 

It was during the development of GS4A that the idea of reverse scaffolding emerged as a 
design architecture (Chase & Abrahamson, 2015). In GS4A, users read texts about problematic 
situations they are to solve, and they are given a set of generic tools to model these situations. In 
the course modeling the situations, students are encouraged to reflect on their models and note 
these embedded structural and functional patterns: (1) consistent measures; (2) equivalent 
expressions; and (3) shared frame of reference. These goals are conceptualized as the activity’s 
“situated intermediary learning objectives” (SILOs) 

As students progress through the activity, they realize the shortcomings of the available 
generic tools for generating and maintaining the SILOs. Through this reflection, the students 
formulate simple understandings of powerful algebraic ideas. With each articulation of what the 
mathematical tool should do, the technological learning environment takes on the enactment of 
that particular feature, thus relieving the students from enacting it themselves. As such, the 
GS4A technological system co-constructs the model only once students understand the necessity 
and functionality of each specific property of the model. Thus the pedagogical system relieves 
users from executing what they know to do rather than what they do not know to do. 
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I suggest that reverse-scaffolding a students’ emergent conceptual understanding hinges 
on students building subjective transparency for features of the number-line model. In the 
following chapter, I will elaborate on the classical idea of transparency and how it acts as an 
organizing principle in GS4A, where students build subjective transparency as they advance 
through the activity. In order to reverse scaffold, I have created a series of levels that scaffold the 
subjective development of transparency. The conjecture is as follows: Learners will optimally 
achieve subjective transparency of mathematical concepts when they themselves have wished for 
the productive interaction constraints that support their modeling activity. In chapter 3, I 
embellish on the Giant Steps for Algebra design, including more details about how this system 
reverse scaffolds. In chapter 4 I outline the empirical design of this study. In chapter 5 I discuss 
the results. In chapter 6 I share the implications of the results and possible future work. 
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CHAPTER 2: Theoretical Perspectives 

This chapter elaborates on the construct of transparency by discussing prior research on 
the ontological and epistemological nature of learning tools. The construct of transparency is 
particularly relevant with respect to learning tools designed to scaffold students’ emerging 
understanding. In order to understand the relationship between scaffolding and knowledge 
acquisition, this chapter will also explore of the notion of scaffolding. Finally, this chapter will 
offer connections between developing transparency and scaffolding.  

 
2.1 Transparency: A Past and Present Lens on Educational Design 

Transparency is defined here as a psychological construct related to objects and 
procedures inherent in cultural practice—it is the social agent’s understanding of how purposeful 
artifact-mediated actions, such as cutting paper with a pair of scissors, changing a bicycle gear, 
or solving an algebra problem by manipulating symbols, accomplishes their objective. As such, 
transparency is, or should be, of central interest to media scholars as well as educational 
theoreticians.  

Within sociocultural literature, learning tools are conceptualized as instrumental to the 
mediation of disciplinary content, because they organize and embody routine practices. Thus 
action taken with learning tools instantiates conceptual schemas by constituting and enabling the 
performance of problem-solving. Unsurprisingly, scholars of learning have forever been 
fascinated by the process through which manipulating objects transmogrifies into conceptual 
knowledge.  

As I explain, the construct of transparency can be instrumental in organizing 
investigations into tool-mediated conceptual learning. I begin my discussion of transparency by 
stepping back to introduce the perspective of distributed cognition. The theory of distributed 
cognition shares with the theory of transparency particular attention to relationships between the 
latent properties of artifacts and the conceptual schema that these same properties may render 
concrete. However, whereas the theory of distributed cognition pertains to the interplay between 
human activity and the artifacts they use, the theory of transparency emphasizes the explicit 
pedagogical implications of these interactions. Transparency engages central ideas of distributed 
cognition yet, taking a pedagogical view, shuffles the elements so as to offer implications for 
design and instruction. 
 

2.1.1 Distributed cognition.  

Distributed cognition is a theory of human practice that focuses on the structured 
relationships among human participants to a practice and the media that implicitly mediate the 
activity. Clark (2003) writes 

 
What is special about the human brains, and that best explains the distinctive features of 
humans intelligence, is precisely their ability to enter into deep and complex relationships 
with non-biological constructs, props, and aids. (p. 5) 
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In particular, Clark coins the phrase ‘information-processing merger’ to describe how humans so 
naturally create tools that become central to their problem-solving processes. 

Consider the array of tools, both new and old, that support our thinking: pen and paper, 
abacus, calculator, computer. We extend our thinking process by developing routines for 
engaging the world via cognitive artifacts. For Clark (2003), the work of cognitive scientists is in 
understanding how human thought and reason is born out of looping interactions between 
material brains, material bodies and complex cultural and technological environments (p. 11). 

From a distributed-cognition perspective, the pedagogical utility of learning media can be 
theorized as offloading aspects of the cognitive process. In so doing, “physical actions [upon 
media] enable people to query the environment to test their ideas” (Martin & Schwartz, 2005). In 
turn, the incorporation of technology in practice lead[s] to the creation of extended 
computational and mental organizations: reasoning and thinking systems distributed across brain, 
body, and world. (Clark, 2003, pp. 32-33) It therefore stands to reason that we should understand 
what types of information-processing mergers are most beneficial to learning, what tools offer 
these mergers, and what are the cognitive affordances of different external thinking media. 

Building on Gibsonian ecological psychology as well as phenomenological philosophy 
Kirsh (2013) develops the notion of the enactive landscape, “the structure that an agent co-
creates with the world when he or she acts in a goal-oriented manner” (p. 10). More specifically, 
agents operate on objects, and “[m]oving the object and attending to what that movement reveals 
pushes us to a new mental state that might be hard to reach without outside help” (p. 2). When 
these objects are tools that we learn to use in engaging the world, our enactive landscapes 
become object-mediated. As such, when we appropriate cognitive artifacts, that is, when we 
create new information-processing mergers, we extend our cognitive enactive landscapes; we 
instrumentalize our reasoning. 

Learners’ capacity to adopt a new tool thus depends on a panoply of historical, 
technological, and experiential factors. At the same time, how effectively we instrumentalize our 
reasoning with new cognitive artifacts is contingent on properties of our learning experience, 
which may vary. For example, perceptually rich artifacts may detract novices from their 
cognitive function (DeLoache, 2000; Uttal, O’Doherty, Newland, Hand, & DeLoache, 2009). 
Also, contexts of engagement play a role in the quality of adoption: “meaning is given to the 
manipulation of objects through the siting of the objects within familiar contexts” (Williams, 
Linchevski, & Kutscher, 2007, p. 154). 

Given a particular content-related goal, what objects should educational designers create? 
A single mathematical idea might be instantiated in many different forms that may bear different 
learning affordances. Martin (2009) offers a fresh perspective on the role of manipulation in 
conceptual development. In their view, manual actions on the environment make manifest vital 
aspects of the conceptual modeling process: the selective organization of phenomenal features 
into working models highlights latent quantitative properties and relations and brings these closer 
to familiar, more manageable goal structures and thus renders them better suited for visual 
reasoning. As such, modeling activities bear the potential of fostering an enduring learning. What 
we learn about content by modeling is to solve prospective problems of the same conceptual 
class, because those future problems, too, will necessitate reconfiguring resources. This 
perspective resonates with the notion that artifacts offload cognitive content in the service of 
mundane practice (Hutchins, 1995a) and that we think by adapting the environment—
manipulation can be epistemic activity (Kirsh, 1996). 
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To conclude, the effect of tools on our thinking is dialectical: even as we learn to act and 
think in new ways as framed and facilitated by these tools, the tools bear the potential of reifying 
for our reflection what and how we are acting and thinking. While distributed cognition is a 
helpful theory for explaining the cultural practice of thinking with objects, this theory does not 
pay specific attention to the properties and structures of the tools themselves and the pedagogical 
implications of these properties and structures. 

 
2.1.2 Tools for learning.  

A study of transparency as it relates to learning is situated intellectually in research on 
concrete and virtual objects in the service of STEM education, namely manipulatable objects or 
just “manipulatives.” It is, therefore, important to step back and contextualize our discussion of 
transparency in the literature on artifacts and tools for learning. 

Artifacts are essential to reform-oriented mathematics education. When designers create 
situated phenomena as instantiations of mathematical concepts, these situations create 
opportunities for teachers to guide students toward building meaning for symbolic expressions 
(Herscovics & Linchevski, 1994; Mariotti, 2009; Pratt & Noss, 2010; Radford, 2003; Sfard, 
1994). 

A wealth of previous research has portrayed the complexity of circumstances under 
which the use of manipulatives as pedagogical tools for mathematics learning are more or less 
efficient (e.g., Edelson, 2002; Greeno, 1998; Martin & Schwartz, 2005; Nemirovsky, 1994).  In 
support of using manipulatable instantiations of mathematical concepts, Meira (1998) considers 
the “intrinsic qualities of material displays and…. how those qualities might promote individual 
cognitive efficiency by enabling users to see underlying principles and relations through them” 
(pp. 123-124). Highlighted here is the potential of seeing these principles and relationships and 
thus grounding otherwise abstract principles and relationships. Meira (1998) goes on to write that 
‘seeing’ is contingent not so much on the properties of the tool itself as much as the prior 
sociocultural experiences that the participant brings to the table. In like vein, Ball (1993) argues 
that learning with manipulatives requires certain entry content knowledge. The abacus, for 
instance may assist in strengthening concepts of place value by providing imagery and bodily 
engagement. However, the place value relationships are not inherent in the physical material and 
can only be seen by someone already familiar with these ideas. 

As such, pedagogical instantiation of abstract concepts as manipulatable materials bears 
the potential for dual-representation (Uttal, O’Doherty, Newland, Hand, & DeLoache, 2009), 
whereby certain “peripheral” properties of a manipulative may hinder the learning process it 
should be supporting. Specifically, a manipulative’s contextually irrelevant affordances--such as 
color or symbolism--may evoke the user’s previous experiences or interests in ways that 
ultimately derail the learning process and do not support the teacher’s objectives. Consequently, 
it is important that educational designers who develop manipulatives understand theories of tool-
mediated learning; and that these theories influence and inform their designs. 

 
2.1.3 Epistemic fidelity.  

In an effort to better understand the qualities of learning tools that either help or hinder 
cognitive activity, researchers began focusing on what is cognitively visible or invisible to the 
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learner. An artifact whose structure and mechanism were objectively accessible for agents to 
explore and interpret was thought of as transparent, for example, a wristwatch that revealed its 
inner workings was considered transparent. These tools were also thought to be on a continuum 
of epistemic fidelity (Roschelle, 1990). The term epistemic fidelity was introduced as a way of 
gauging the degree to which a cognitive artifact indeed represents its ostensible target ideas. 

Initially, the terms “transparency” and “epistemic fidelity” were taken as two sides of the 
same coin, with “transparency” being the psychological counterpart of the “epistemic fidelity” 
engineering facet. That is, an artifact with high epistemic fidelity was considered as per force 
transparent. Yet Meira (1998) found that higher epistemic fidelity did not always result in 
improved learning outcomes. He split an 8th grade classroom into three groups, and each group 
used different tools with which to explore a particular subject matter. All tools were designed as 
instantiations of linear functions, with two physical instantiations and one technological 
instantiation. The first group used a winch with two weighted ropes that dropped down from two 
spools that moved on one axis (see Figure 4). The spools were different in size and therefore, 
when the axis turned the ropes rose at different rates. 

Figure 4. The Winch Mechanism [Image taken from Meira (1998)]. 
  
The second group used a similar mechanism, yet the spools were replaced with springs that 
differed in elasticity. There were hooks on the end of each spring so that the participants could 
attach small weights to each spring (see Figure 5) 
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Figure 5. The Spring Mechanism [Image taken from Meira (1998)]. 

 
The third group worked on a computer program. The program screen displayed two 

tables showing different input–output relationship. In each condition the participants were tasked 
with determining the relationship between two sets of numbers, i.e. the linear function. The 
researcher hypothesized that the tangible systems would ignite students’ embodied understanding 
of how things work and that this would be applied to this new context in support of building 
mathematical understanding. For example, the participants would be able to articulate how the 
spool’s different diameters would impact the rates at which the ropes are retracted. Meira 
considered the epistemic fidelity of each of these conditions and determined that the first, the 
winch mechanism, was the most transparent, with the highest epistemic fidelity, because “all 
parts of the mechanism (as well as their connections) can be directly manipulated, observed, and 
measured” (Meira, 1998, p. 130). The springs were considered less transparent, because the 
elasticity of the springs is an invisible characteristic. Lastly, the computer program was thought 
of as the least transparent, with the lowest epistemic fidelity, because all characteristics of the 
device were internal, invisible, and non-manipulatable. 

The findings indicated that participants quickly identified that the relationship between 
the physical devices and the changes, either the length of the rope or the length of the stretched 
springs, resulted from an internal characteristic of the devices. Yet, those participants who 
worked with the computer program could not initially determine the relationship. However, as 
the task progressed the students working with the computer program were able to decipher the 
rate of change and quantify this numerically, whereas those participants working with the 
physical devices struggled with this same calculation. Meira (1998) writes, of those participants 
working with the springs, “they were able to identify stiffness as a salient feature of the device, 
but it took them some time to integrate this factor into their problem solving” (p. 135). 

In summary, whereas a learning tool’s epistemic fidelity is of concern for designers and 
researchers, this analysis must not neglect the context in which these tools are used and 
understood. A device’s transparency does not simply relate only to its physical or virtual design, 
but “the transparency of a device emerges anew in every specific context and is created during 
activity” (p. 138). This finding prompted refinement of the term transparency such that it 
includes contextual parameters as well as the learner’s subjective factors. Transparency is 
therefore a psychological construct—it captures the relation between a person and an artifact 
(see Hancock, 1995). 
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2.1.4 Designing for transparency. 

Constructionism boils down to demanding that everything be understood by being 
constructed. (Papert, 1991a, p. 2) 
 
The notion of transparency suggests that designers should create learning tools that 

enable students to build conceptual transparency within a given activity. Constructing 
transparency via psychological actions takes on a new facet when the instructional activity 
incorporates physical actions of construction. Educational designers then ask: Does the learning 
tool enable the user to conceptualize and construct, both physically and psychologically, the 
intended learning objective? What is the relation between physical and psychological 
construction? Consider the case of designing for subjective transparency of mathematics. 

When we say that a mathematical artifact is transparent, we refer to the subjective 
salience of its content-relevant features that measure, quantify, calculate, convert, or otherwise 
manipulate information as intermediary steps toward solving a given problem. Therefore, where 
industrial designers often wish to obscure the workings of artifacts in the service of efficient use, 
pedagogical designers might choose to encumber use in the service of learning. For example, in a 
study of physically distributed problem solving, Martin and Schwartz (2005) found that 
participants generated more salient and transferable conceptualizations of fractions when using a 
set of “obdurate” square tiles as opposed to classical pie-shaped manipulatives. Whereas both 
sets of manipulatives—the square and the circular—can technically serve in modeling part-
whole relations, pie pieces were found to obscure the notion of “whole” precisely because 
students did not need to assume agency in distributing onto those media their emerging sense of 
whole. The visually compelling circle-whole did the work for them, and so they did not exercise 
the psychological process that would foster a new schema. On the other hand, students working 
with square tiles had to create the representation of the whole for themselves, and that experience 
endured. More generally, the learner’s agency in building a representation has been shown to 
contribute to learning (Gravemeijer, 1999). 

Intriguingly, though, under certain conditions making practice transparent might impede 
rather than support learning, for example by deflecting classroom discussions from goal content. 
Adler and Lerman (2003) name this phenomenon “the dilemma of transparency.” The teacher’s 
dilemma is also the designer’s dilemma. How does a designer decide which elements of a 
pedagogical tool should be engineered as transparent and which should remain covert? Which 
tasks might render opaque features of an artifact transparent? 

In summary, a theoretical position that learning mathematical content is tantamount to 
developing subjective transparency for mathematical procedures is important to consider when 
designing instructional artifacts. The enactive landscape that is constructed through iterative 
manipulations should reveal critical characteristics of the instantiated conceptual content. If the 
artifacts’ function is transparent to the users, these users stand to develop the target content.  

 
2.2 Scaffolding: A Pedagogical Approach to Learning 

When a small child is first learning how to walk there are several ways that the adults can 
respond. The adult can either let the child figure out how to walk, or the adult can enact aspects 
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of the walking activity for the child (see Figure 6). As children learn to walk, speak, ride a bike, 
and read and write, there are many more instances in which the surrounding adults are faced with 
this same dilemma. 
 

 

 
Figure 6. “Two women teaching a child to walk.” Sketch by Rembrandt van Rijn. 1 

 
Learning theorists may differ in their proposed models of learning, yet by-and-large they 

all attend to the roles of adults, tools, and peers in the learning process. Most educators, 
educational theorists, curriculum writers, and even learners are familiar with the idea that the 
learner can benefit from some assistance to be able to achieve a learning objective. In particular, 
the term “scaffolding” is often used to characterize the various contributions made by agents and 
artifacts to an individual’s learning. Once the learner is proficient in executing some target skill, 
the litany goes, this scaffolding can be removed. 

This section seeks to thoroughly explore the notion of scaffolding. I do this to clarify the 
rationale of a proposed design framework, which I will elaborate on in later sections. And I begin 
by asking the question “just because designers are building a learning environment where people 
are progressing conceptually along a learning trajectory that they have designed, does that 
necessarily imply that designers are scaffolding?” Moreover, how do designers conceive of the 
concept of scaffolding, an ostensibly sociocultural term, if they call themselves constructivists or 
even radical constructivists? 

 This section first explores the origins of the pedagogical concept known as 
scaffolding. Following this, I reintroduce my alternative genre of scaffolding and examine its 
implications for the design of GS4A. I conclude this section with an argument for a new 
approach to the design of constructivist learning activities, one I call reverse scaffolding. 
 
2.3 Theoretical Underpinnings of ‘Scaffolding’—a Brief History  

Where did the idea of scaffolding come from? Vygotsky (1978) developed a socio-
cultural perspective on learning that explicitly included an outsider who participates in the 
learning process by augmenting the child’s “zone of proximal development” (ZPD). Just as an 
adult can perform for a child aspects of her physical actions, such as walking, the adult can 

                                                
1 Figure used in Levin and Cole (2007) to illustrate the complexity of teaching. 
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perform for a child aspects of her conceptual actions. Within the Vygotskian worldview, this co-
enactment is necessary, because some elements of the activity are not performable by the novice 
alone. Understandably, some scholars attribute the notion of scaffolding to Vygotsky (Estany & 
Martínez, 2013). And yet Vygotsky never quite coined the metaphor of scaffolding, let alone can 
he be said to have formally operationalized scaffolding, classified its variants, or specified its 
desired attributes. 
 

 2.3.1 What does this mean for learning?  

For Vygotsky, performance precedes consciousness. Novices participating in social 
activities achieve rudimentary competence prior to their being able to articulate their 
understanding. In a sense, it is through participating in the enactment of social activity and its 
discursive envelope that learners appropriate cultural forms, develop their own conceptual 
understanding, and refine their ideas for subsequent expression. 

Let me elaborate. The ZPD is the range between what the child can achieve 
independently and what the child can achieve with intervention. Or as Vygotsky (1978) puts it 

 
[ZPD] is the distance between the actual developmental level as determined by 
independent problem solving and the level of potential development as determined 
through problem solving under adult guidance or in collaboration with a more capable 
peers. (p. 86) 
 
From this I am then led to consider how “the notion of zone of proximal development 

enables us to propound a new formula, namely that the only ‘good learning’ is that which is in 
advance of development” (Vygotsky, 1978, p. 89). I take this to mean that the enabled 
performance of the learning objective allows the learner to eventually advance developmentally, 
and that this is classified as a positive learning experience. 

The Vygotskian axiom of production prior to conception caught the attention of a Jerome 
Bruner. In his research on the nature of skills acquisition, Bruner was interested in developing a 
sociological analysis of learning. The description of this perspective is that: 

 
It involves a kind of “scaffolding” process that enables a child or novice to solve a 
problem, carry out a task or achieve a goal, which would be beyond his unassisted efforts. 
This scaffolding consists essentially of the adult “controlling” those elements of the task 
that are initially beyond the learner’s capacity, thus permitting him to concentrate upon 
and complete only those elements that are within his range of competence. (Wood, 
Bruner, & Ross, 1976, p. 90) 
 
This characterization clearly builds on Vygotsky’s perspective, and indeed Bruner 

attributes this work to his discovery of the Soviet psychologist’s writing (Bruner, 1986). 
However, while Woods, Bruner and Ross’s investigations into the nature of scaffolding 

within learning environments shares intellectual territory with Vygotsky, they disagree on one 
tenet. While Vygotsky asserts that production precedes understanding, Woods, Bruner and Ross 
(1976) write: 
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It is quite obvious why comprehension must precede production and why in most 
instances it does. It must because without it there can be no effective feedback. One must 
recognize the relation between means and ends in order to benefit from knowledge of 
results. (p. 90 original italics) 
 
This notion of comprehension prior to production is grounded in studies of language 

acquisition, wherein there is empirical evidence that children comprehend language before they 
can produce it. 

If I apply this understanding to a scaffolded learning situation, it seems clear that 
comprehension is contingent on the learner being able to understand the co-enacted solution. 
Furthermore, in order for the outcome of a learning activity to be recognizable as a solution the 
learner must begin the learning activity with some understanding of what a successful solution 
will look like as well as an idea about how to reach this solution. 

It would now appear that these two perspectives are antithetical. The distinction between 
co-enacting as a way of coming to know something, and having some knowledge against which 
production can be measured seem like two different things. And indeed they are. In this 
distinction between “do before know” and “know before do” I begin to recognize a fundamental 
fissure that I elaborate on in the remainder of this section—a fissure that I view as critical to 
educational theory and design. Perhaps, I submit, designers should reserve the notion of 
scaffolding to the “do before know” conceptualization of learning. 

This short history described the perspectives of the two theoretical titans who have been 
credited with introducing the term scaffolding. While their perspectives are united in many ways, 
this section also highlights where they differ, as this difference is one that plays a fundamental 
role in how the concept of scaffolding has been applied in subsequent research. The following 
sections will explore how theorists and researchers have taken up defining scaffolding in 
different learning environments, and scaffolding and constructivist epistemology. Lastly, I will 
present an argument against the use of scaffolding within constructivist or discovery-based 
activities and instead propose a new term – reverse scaffolding. 

 
 2.4 Scaffolding Learning Environments 

The term “scaffolding” has been used so frequently and in so many distinctly different 
contexts that it is difficult to pinpoint a coherent and unified understanding of its meaning. In its 
colloquial use, scaffolding is a structure that is erected on the façade of a building while it 
undergoes renovation. In education parlance, the colloquial sense of scaffolding is used 
metaphorically to describe a situation in which a tutor structures elements of an educational task 
while the learner apprentices into this same task. And yet educational theorists and designers also 
speak of scaffolding as the contributions made by specific tools, not a human agent, in the 
accomplishment of a certain task. In some cases the structure guides the learner through a 
predetermined series of steps that eventually enable their independent performance of the goal 
skill. Yet in other cases the learner is called to tinker with materials until they achieve the desired 
learning objective. Whereas this is by no means an exhaustive list of examples, it serves to 
demonstrate how widespread and pervasive the term of scaffolding has become. “Scaffolding” is 
now almost synonymous to “supporting” or just “teaching.” This is cause for concern for the 
field of educational research. As Pea (2004) so aptly noted, “the concept of scaffolding has 
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become so broad in its meanings in the field of educational research and the learning sciences 
that it has become unclear in its significance” (p. 272). Pea (2004) goes on to discuss how this 
dilution in the meaning of scaffolding has created so much variance that establishing empirical 
boundaries has become difficult. In an attempt to provide a container he proposes that there are 
two main axes that can describe how scaffolding provides support to the learning process. The 
first is social and thus pertains to the agents in the learning environment, and the second is 
technological and relates to how artifacts are designed. 

In the following sections I survey some of the uses of the term ‘scaffolding’ in relation to 
learning. This exercise will enable me to clarify what educational researchers consider when they 
utilize this term. In so doing, I will demonstrate the need for, and lay a foundation for, my 
nascent theoretical contribution, the concept of reverse scaffolding.  
 

2.4.1 Scaffolding in classroom contexts. 

Cazden (1979) was one of the first researchers to apply Vygotsky’s description of 
interpersonal learning, through scaffolding, to the teacher–student relationship. Because the 
classroom is the primary context for teaching and learning, it stands to reason that this context is 
also rich with examples of how scaffolding arises between teacher and student. As characterized 
by Stone (1993) “the student is not a passive participant in teacher–student interaction but 
scaffolding is seen as a fluid, interpersonal process in which both participants are active 
participants” (cited in Pol, Volman, & Beishuizen, 2010, p. 272). Consequently, the process of 
scaffolding learning is highly personalized, there are many different operational definitions, and 
therefore empirical findings are all over the map. 

In a meta-analysis of papers published between 1997-2007, Pol et al. (2010) sought to 
synthesize empirical and theoretical work on scaffolding in the classroom in hopes of building a 
united framework upon which they based their proposed research program. Their framework is 
described in the following ways. There are three characteristics that are part of all instances of 
teacher–student scaffolding: (1) contingency; (2) fading; and (3) transfer of responsibility. 
Contingency describes the degree to which the scaffolder assesses the learner and adjusts their 
approach contingent on the results of the assessments. Fading describes the process by which a 
particular level of scaffolding is gradually removed as the learner gains competence. Transfer of 
responsibility works in consort with fading to describe the process by which the learner slowly 
takes up agency over aspects of the task that were previously performed for them. Since then, 
numerous researchers have investigated scaffolding within an educational context. Cazden 
(1981) examined teacher  pupil scaffolding interactions, focusing on the use of interrogation to 
guide learning. Examining whole-classroom scaffolding interactions, Smit, A. A. van Eerde, and 
Bakker (2013) found additional scaffolding tactics, specific to those contexts, that instructors use 
in their didactical efforts to hand over agency to the learner. These additional tactics are: 

• layered—teachers attend to multiple types of emerging information, both during and after 
the lesson; 

• distributed—a teacher’s responsiveness to student performance occurs across multiple 
lessons; and 

• cumulative—students’ increasing independence over an instructional unit cannot be 
attributed to any particular point of contact with a teacher. 



 

 21 

Thus the notion of scaffolding has evolved. In particular, scaffolding is not exclusively 
inherent to the actions of a co-present teacher per se. Rather, aspects of the instructional rationale 
and interaction may be cumulatively layered and distributed onto other classroom instructional 
resources. In particular, scaffolding practices are distributed over educational infrastructure—
informative, functional, and interactive tools or media that complement, emulate, and possibly 
enhance the variety of customized supports that co-present human agents provide (Meira 1998). 
 

 2.4.2 Scaffolding in technology-enhanced environments. 

As such, when educators invest and distribute their pedagogical efforts into a variety of 
interactive elements within a learning environment, we might still conceptualize these concrete 
or virtual features as bona fide scaffolds—scaffolds that are embodied, embedded, and latent to 
the artifacts until students engage, mobilize, and leverage them (Barab et al. 2007). In these 
environments, it may not be the direct “live” actions of an adult that scaffold the child’s assigned 
task by co-enacting it but rather elements of the artifacts that co-enact the task “remotely” 
(Quintana et al. 2004; Reiser 2004).  

In the last several years there has been a wealth of studies interested in understanding 
technology-enhanced learning. Within the birth of this new learning environment researchers are 
interested in questions of design, questions of effectiveness, and questions of epistemology, just 
to name a few. One interesting line of inquiry tackles questions related to the relationship 
between scaffolding and the technology tools. Sherin, Reiser, and Edelson (2004) developed a 
framework for analyzing scaffolding within technology-enhanced learning environments. The 
premise of their framework was to devise technology-enhanced learning environments that have 
a scaffolding feature, and a matching environment without this same feature, so that researchers 
can measure the impact that the scaffold has on learning. A simple example that they use is a 
word problem about two trains leaving a station, where one train is traveling 30 miles an hour 
and the other train is traveling 55 miles an hour in the opposite direction (see Figure 7). The 
students are to determine the total distance between the two trains after a given period of time, in 
this case 3 hours. 
 

 

 
Figure 7. Example train problem (Sherin et al., 2004, p. 390). 

 
In the scaffolded environment the students have a calculator, and in the unscaffolded 

environment there is no calculator. In this example a calculator provides computational support 
so that the students can focus their cognitive attention on designing the process for solving this 
problem, and monitoring their execution. The calculator, in this instance is performing aspects of 
the task that, hypothetically, students could do on their own without it. I ask the question, should 
a calculator be considered as a scaffold? If the learning objective of this environment is to 
calculate, then the calculator is indeed performing the calculations with the student and the 
solution is co-enacted. Yet, presumably a learning objective is for students to understand the 
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solution process. Therefore, the calculator, in this instance, is not scaffolding the learning 
process, but rather providing support.  

This distinction is interesting because technology-enhanced learning environments can be 
programmed to perform computational tasks quite easily. therefore, designers should determine 
what features of the environment actually serve to scaffold the essential cognitive shifts in the 
learning progression, and what features simply support auxiliary interactions with the interface, 
if any. 

Looking closer at the variety of artifact elements bearing the potential to scaffold the 
learning process, I will now focus on symbolic elements, because these are important to 
processes of mathematization. In their analyses of educational technology, Quintana et al. (2004) 
located scaffolding affordances in representations, specifically in features of the learning 
environment that highlight for learners how certain interactive features demonstrate content 
related structures. For example, selectable hints would appear on a computer monitor to suggest 
the meanings of symbolic notations and animated procedures. Reiser (2004) argues that 
“scaffolding” is also taken to mean that the software both structures and problematizes the 
situation, stewarding the students toward discovering the instructional unit’s target content 
(Reiser 2004). That is, the software scaffolds discovery. As such, constructivist parlance appears 
to have usurped the sociocultural term without adhering to its ideological underpinnings. 

Whereas by no means have I exhausted the different contexts in which notions of 
“scaffolding” have been applied, I hope to have demonstrated how widespread, varied, and 
pervasive the term of scaffolding has become (for a broader review see Smit et al. 2013; Pea 
2004). Pea discusses how this dilution in the meaning of scaffolding has created so much 
variance that establishing empirical boundaries has become difficult. He summarizes 

 
The goals of scaffolding research going forward should be to study how scaffolding 
processes—whether achieved in part by the use of software features, human assistance, or 
other material supports—are best conceived in ways that illuminate the nature of learning 
as it is spontaneously structured outside formal education and as it can most richly inform 
instructional design and educational practices. (p. 446) 
 
Indeed, views of learning outside of the mathematics classroom suggest types of 

authentic instructional methodologies that flout the very rationale of scaffolding. For example, 
Reed and Bril (1996), cultural anthropologists of skill acquisition, have documented a pervasive 
parenting practice in which mothers create for their infants opportunities to develop new motor-
action coordinations. Rather than model, explain, or directly help the infants achieve the target 
skill, the mothers instead create for the infants what the researchers call a “field of promoted 
action”’ in which infants discover for themselves how to negotiate the challenging situation into 
which they have been thrust. As such, the infants develop effective motor-action responses 
customized to their own musculoskeletal complex. From a distant yet complementary 
perspective, sports scientists informed by Nikolai Bernstein’s theories of kinesiology and 
biomechanics have put forth the hypothesis that athletes learn better when they must each invent 
for themselves their personal solutions to motor-action problems (Chow et al. 2007; Vereijken & 
Whiting 1990). It would make little sense to name these various cultural practices as 
“scaffolding”’ because they are founded on the principle of not-helping rather than helping—in 
each of these practices the learner is set in a dedicated micro-ecology geared to promote the 
personal discovery of new affordances for action. 
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As such, given the numerous operationalizations and pedagogical commitments of 
“scaffolding” as well as the conflicting precedents of non-scaffolding cultural practices, it 
becomes questionable whether researchers and designers should persist in using the same word 
to describe any dyadic, whole-classroom, and technological types of tutorial tactics. This issue 
becomes acute when technology designers engineer stand-alone learning environments wherein 
pedagogical methodology is “hard-coded”. If educational researchers are to keep using the term 
“scaffolding” in their practice and discourse, what conceptualization of scaffolding, could we 
possibly use? Specifically, what form of scaffolding should we implement in educational 
software programs? Our concern is that where a tutor or tool perform aspects of the learning 
activity for the learner, there is no guarantee that these scaffolding actions be transparent. 

 
 2.5 Scaffolding in Constructivist Epistemology: an Oxymoron?  

Genetic epistemology (Piaget, 1968), often dubbed “constructivism,” is a philosophical 
perspective on how humans come to make meaning of their environment. Researchers 
committed to constructivist philosophy are interested in the relation between individuals’ 
interactions in the environment and their construction of understanding “in the head” (Cobb, 
1994). This notion of building upon experiences began with Piaget (1968), who argued, that 
“children are active thinkers, constantly trying to construct more advanced understandings of the 
world” (p. 45). Because the learner’s process of knowing is deeply embedded in his or her own 
experience, “truths are replaced by viable models—and viability is always relative to a chosen 
goal” (von Glasersfeld, 1992, p. 382). Knowledge production or knowledge growth is the 
process in which “perturbations that the cognizing subject generates relative to a purpose or goal 
are posited as the driving force of development” (Cobb, 1994, p. 14). The presence of these 
inconsistencies instigates the process of restructuring a model of the world or a model of how 
that world works, and this is what is called learning. 
 

2.5.1 Constructivist theories of learning. 

Et, quoi qu’on en dise, dans la vie scientifique, les problèmes ne se posent pas d’eux-
mêmes. C'est précisément ce sens du problème qui donne la marque du véritable esprit 
scientifique. Pour un esprit scientifique, toute connaissance est une réponse à une 
question. S’il n’y a pas eu de question, il ne peut y avoir de connaissance scientifique. 
Rien ne va de soi. Rien n’est donné. Tout est construit. (Bachelard, 1934, p. 17) 
 
And, whatever one might say about this, in scientific life problems do not pose 
themselves. It is precisely this sense of a problem that gives the mark of the true scientific 
spirit. For a scientific spirit, all knowing is a response to a question. If there were no 
question, there would be no scientific knowledge. Nothing comes from itself. Nothing is 
given. All is constructed. (translated by the author) 
 
Constructivist epistemology has given rise to several theories of learning. Specifically 

within the domain of mathematics education, constructivists believe that students learn by re-
inventing mathematical procedures. In fact teaching young children arithmetic algorithms is 
harmful, because it fails to enable the children to ground the content in their earlier 
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understandings while, worse, training the children to ignore their own thinking (Warrington & 
Kamii, 1998). 

To ameliorate these alleged ills of mathematics instruction, Freudenthal (1983), father of 
the Realistic Mathematics Education (RME), developed the didactical phenomenology of 
mathematical structures. This pedagogical methodology is based on the principle that children 
create their own models of problematic realistic situations. Gravemeijer (1999) explains the 
function of modeling activities in mathematics learning, emphasizing the imperative of letting 
students’ models emerge. 

 
The premise here is that students who work with these models will be encouraged to 
(re)invent the more formal mathematics. … [F]ormal mathematics is not something “out 
there” with which the student has to connect. Instead, formal mathematics is seen as 
something that grows out of the students’ activity. The students are expected to develop 
formal mathematics by way of mathematizing their own informal mathematical activities. 
(pp. 159-160; original italics) 
 
Gravemeijer (1999) proposes to view conceptual learning as a structured developmental 

sequence of iterated semiotic emergences, wherein each cognitive structure can be viewed as 
referring to the last one in an extending chain of significations. The designer analyzes a target 
concept by investigating its phylogenetic and ontogenetic origins so as to hypothesize how the 
historical process may be simulated for individual learners under controlled settings. The 
designer then creates problems and materials to instigate and mobilize this reinvention. 

How does this vision of knowledge production compare to socio-cultural perspectives? 
Socio-cultural theorists contend that knowledge is negotiated and acquired through social 
interactions whereby the less knowledgeable individual becomes acculturated into an existing 
cultural system or practice. Constructivists, however, maintain that knowledge production is an 
internal and personal negotiation in which the learner must necessarily reinvent the formal 
systems underlying those would-be cultural practices. In so doing, subjective models of 
phenomena are reorganized so that personal experiences form a foundation for further 
interpretation and knowledge building. 

And yet, it is too simplistic to pit these two camps against each other. Past decades have 
seen work to reconcile these seemingly opposing theories (Cole & Wertsch, 1996). One vein of 
analysis that unites these two theories is very relevant to this discussion, namely the use of tools 
or artifacts in the learning process. From a socio-cultural perspective the learner becomes 
indoctrinated with societal norms and practices when he or she engages in activities involving 
tools, where for Vygotsky almost anything is a tool, including language. As Cole and Wertsch 
(1996) point out, cognitive activity is shaped by prior cultural practices, for the tools with which 
people think have been shaped by thinkers who have come before them. Consequently, as 
humans come to know their tools they reinvent aspects of this historical thought process. 

In sum, the concept of scaffolding is broadly associated with the socio-cultural camp and 
as such is taken to describe deeply embedded social practices as shaping the learning process. 
Indeed, for Vygotsky production precedes conception. In contrast, for Constructivists production 
is contingent on assimilating the available means of production to pre-formed goals. Is it 
appropriate to transport the term scaffolding from its natural habitat in socio-cultural theory and 
adopt it for use as a constructivist pedagogical practice? I think not. Moreover, since socio-



 

 25 

cultural and constructivist theories maintain unique perspectives on how learning happens, I 
submit that these theories should inform unique perspectives on how teaching should be 
organized. 

 
 2.5.2 Constructivist design heuristics for learning activities.  

When constructivist designers refer to the notion of scaffolding within their pedagogical 
designs, what exactly are they referring to? Reiser (2004) contributed some ideas about how 
technology can scaffold inquiry-driven learning by identifying two specific ways that software 
systems support learners. These mechanisms are structuring and problematizing. To address the 
former, 

 
[I]f reasoning is difficult due to complexity or the open-ended nature of the task, then one 
way to help learners is to use the tool to reduce complexity and choice by providing 
additional structure to the task.” (p. 283) 
 

For example, a software tool designed to scaffold writing-up scientific investigations can display 
a list of the student’s research questions, inferences, and observations, so that the student can 
easily refer back to these. This description is well aligned with notions of distributed cognition 
(Hutchins, 1995b; Zhang & Norman, 1994), as the tool does the remembering and categorizing, 
allowing the learner to focus their cognitive attention on writing their composition. 

Problematizing, however, is an entirely different way of providing support for the 
learning process. This design heuristic is employed when the software system highlights a 
discrepancy in the student’s observations, thus suggesting the need for further problem-solving. 
This strategy may not simplify the task; in fact it will most likely render the task more difficult 
initially. Let me look more closely at an example of problematizing to better understand how this 
particular interface scaffolds. Reiser (2004) describes how the software system 
ExploreConstructor uses the problematizing scaffolding strategy by “highlighting epistemic 
features of scientific practices and products” (Strategy 7d in Quintana et al., 2004) when it 
presents students with dialogue boxes that problematize the difference between forming 
observations about a situation and making interpretations about a situation. This problematizes 
an aspect of the scientific domain and thus highlights it. The technology interface is described as 
setting the stage, through supportive structure and problematizing, for users to explore the 
distinction between observation and interpretation, one that is central to achieving a sound 
scientific argument. 

Reiser (2004) urges designers to find the balance between providing adequate structure, 
so that students can be successful, and problematizing, so that students are engaged with and 
capitalize on their intuitive understandings for constructing new knowledge. One way of 
achieving this in software systems is through the use of representations that build conceptual 
bridges between intuitions or prior knowledge and domain-specific ways of understanding. For 
Quintana et al. (2004) a “representation” is something that shows or explains how the 
functionalities of the software system work. Representations, in this context, highlight why 
particular features function in the ways they do, for example, graphs, computer-generated hints, 
or tools that suggest the domain’s formalism so that users’ interactions can better approximate 
expert practices. A representation allows the learner “to think about the deeper concepts and 
structure of disciplinary relations and not get caught up in surface details” (p. 347). These kinds 
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of representations are described as scaffolds for “grounding learner understanding by helping 
learners access familiar ideas on which more formal concepts can be built” (Quintana et al., 
2004, p. 347). 

In conclusion, technology-based learning environments designed using constructivist 
principles can offer a wide variety of mechanisms that are characterized as scaffolds for 
performance, and yet these differ dramatically. Much the same way that a human can scaffold a 
learning process by reducing or chunking elements of the process, a technology-based 
environment can provide structure, as defined by Reiser, and representations, as defined by 
Quintana et. al., problematizing serves to situate a leaner in the task and activate prior knowledge 
and intuitions, a mechanism that is comparable to Woods, Bruner, and Ross’s first scaffolding 
strategy of recruitment. Problematizing could also serve to situate the learner, analogous to 
Woods, Bruner and Ross’s second strategy (reduce the degrees of freedom) as well as the fourth 
strategy (marking critical features), but this is contingent on the problematizing itself. When the 
nature of the task, presented in a technology-based learning environment, is problematized to 
scaffold learning, the problem must be authentic to the learner, and allow the learner to begin 
thinking. They must have the opportunity to construct a hypothesis about the problem, they must 
develop some intuitions about the problem that can then emerge as a foundation upon which to 
build new understanding. 

What is missing from the above descriptions about the potential for scaffolding within 
technology-based constructivist learning environments is an analysis of whether these tools 
allow the users to construct subjective transparency for the aspects of their productions that are 
being scaffolded. For example, if an interface contains a structure that performs a critical 
function, such as the ExploreConstructor described earlier, at what point in the learning 
progression are the users called to construct its criticalness for themselves, or do they simply use 
the functionality to perform a specific task? 

For Reiser a tool is transparent if the interaction with the tool is analogous to the type of 
thinking that the designer is eliciting. By this definition, I see ExploreConstructor as transparent 
with respect to observation and inference because, users must distinguish between them. 
However, as Pea (2004) writes: 

 
The general issue with which I am concerned is whether students using a constrained set 
of forms for producing the work artifacts of scaffolded scientific inquiries are “parroting” 
back disciplinary forms of thinking rather than performing with understanding of what 
they have created. (p. 436) 
 
As a designer I wish to challenge Reiser’s particular notion of transparency. While this 

software system does allow users to generate content within these distinct categories, it robs the 
users of opportunities to construct the scientific importance for this distinction in the first place. I 
would argue that the ExploreConstructor interface does not scaffold why this epistemic 
difference exists. The interface simply supports the user to perform the distinction, with the 
assumption that this why will become transparent. 

 
2.6 Conclusion 

When educational designers and researchers design artifacts that will be manipulated by 
learners, what is the intended outcome? Likely, the designer is hoping that the learner will learn. 
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Likely, the learner is hoping to figure out how the artifact works and using it to solve a particular 
problem. Therefore, how the artifact functions, in relationship to the structures of the problematic 
situations must become transparent to the learner. The notion of scaffolding describes a variety 
of pedagogical moves, taken by either a teacher, tutor, or artifact, that con-enacts the problem 
solution and procedures with the learner. This dissertation seeks to build a framework for 
describing how these two theoretical constructs interact. 

Traditional scaffolding connotes that a more knowledgeable party, a teacher, tutor or 
artifact, is performing aspects of a solution procedure that the learner does not yet know how to 
do. This robs the learner of the opportunity to construct subjective transparency for this 
particular performance. I propose that we ‘flip the script.’ In a Reverse Scaffolding pedagogical 
model, a teacher, tutor or artifact only performs aspects of a solution procedure that the learner 
already knows how to do. Reverse Scaffolding enables the learner to develop subjective 
transparency for aspects of a solution procedure and only then offload these performances onto 
features of the learning environment.   
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CHAPTER 3: The Design of Giant Steps For Algebra  

3.1 Why This Design? Some Background Knowledge 

The story of algebra learning in schools is the story of progressing from arithmetic to 
algebra. A main character in this story is the “=” sign or, rather, students’ evolving meanings for 
this sign (van Amerom, 2003; Filloy, & Rojano, 1989; Herscovics, & Linchevski, 1996; Molina, 
& Ambrose, 2008). Students’ implicit framing of this symbol is operational, because the framing 
is fashioned by a history of solving arithmetic problems such as “3 + 14 = __”, where you 
operate on the left-hand expression and then fill in your solution on the right (Carpenter, Franke, 
& Levi, 2003; Sáenz-Ludlow & Walgamuth, 1998). Ultimately, algebraic conceptualization of 
the “=” sign should be relational—the proposition means that the expressions on the two sides of 
the “=” are equivalent (Jones, Inglis, Gilmore, & Dowens, 2012). Given that the arithmetic 
visualization of “=” is impeding students’ transition to algebra, how might this visualization be 
countervailed? One way that educators approach the work of building students understanding is 
through the use of metaphor. 

The balance metaphor is undoubtedly the most common visualization of algebraic 
propositions. This metaphor is typically introduced to students by invoking interactions with 
relevant cultural artifacts such as the twin-pan balance scale (see Figure 8). 

 
 

 
Figure 8. Balance scale showing “3x + 14 = 5x + 6.” 

 
However, although the balance metaphor is well suited for grounding the fundamental 

algebra algorithm, students’ persistent difficulty in transitioning from arithmetic to algebra 
suggests that this metaphor nevertheless may not be the ideal method for building a relational 
understanding of equations (Jones, Inglis, Gilmore, & Evans, 2013). Moreover, the historical 
substitution of twin-pan scales with electronic scales may have rendered the twin-pan scale 
unfamiliar to many students. I therefore asked, “What alternative metaphor might facilitate 
students’ passage from arithmetic to algebra?” A search revealed that Dickinson and Eade (2004) 
had tackled a similar design problem. They used the number line as a diagrammatic form for 
modeling linear equations (see Figure 9). 
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Figure 9. Number-line instatiation of “3x + 14 = 5x + 6” (Dickinson & Eade, 2004). 

 
Note in Figure 9 how the left-hand (“3x + 14”) and right-hand (“5x + 6”) expressions of 

the algebraic proposition are mapped, respectively, above and below the same number line. In 
particular, pairs of x symbols above and below the number line each denote an arc subtending 
one and the same linear interval. Looking again at the number-line diagram (Figure 9), I want to 
highlight that the combination of above-the-line and under-the-line symbolic indices of one and 
the same line segment offers two perceptually contrasting yet conceptually complementary 
visualizations of a single perceptual stimulus. Note further, looking on the right of Figure 9, how 
this number-line diagram “discloses” that 2x + 6 = 14, so that 2x = 8, and therefore x = 4. 
Students model not two sets of voluminous quantities of equal mass (twin-pan model, Figure 8) 
but a single linear quantity bearing two alternative indices of its extent (number-line model, 
Figure 9). In the number-line model but not in the twin-pan model, students are able to construct 
logical relations between variable and integers directly by attending to spatial properties such as 
adjacency and containment. As the students scan its components, the number-line model appears 
to do the work for them, so that they can do the math less so “in the head” and more so “on 
paper.” 

 
 3.2 Giant Steps for Algebra 

The Giant Steps for Algebra design, described in the following section, is based on this 
“double-measuring-stick” model. The Giant Steps problem narrative depicts a quasi-realistic 
situation, in which Egbert the giant performs two consecutive journeys along a path. These two 
journeys—Day 1 journey and Day 2 journey—begin at the same point of departure and end at 
the same destination. However, the journeys differ in terms of the agent’s process in traversing 
from the start point to the end point. The two journeys correspond to two equivalent algebraic 
expressions. For example the algebraic proposition “3x + 2 = 4x – 1” is rendered into the 
progressions “3x + 2” (Day 1) and “4x – 1” (Day 2). The narrative of this particular example 
reads as follows: 

 
Egbert the Giant has stolen the elves’ treasure. He escaped their land and voyaged to a 
desert island. After mooring, Egbert set off walking along a path. You are Eöl the Elf. 
You are positioned on this island, and you are spying on the giant to find out what he 
does with the treasure. 
Starting from the port and walking along the only path there, Egbert the Giant walked 3 
giant steps and then another 2 meters. He buried some of the treasure, covered it up really 
well, and then went back to the ship, covering up his tracks. 
On the next day, Egbert wanted to bury more treasure in exactly the same place, but he 
was not sure where that place was. Setting off along the same path, he walked 4 steps and 
then, feeling he’d gone too far, he walked back one meter. Yes! He’d found the treasure. 
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He buried the rest of the treasure in exactly the same spot. Egbert then covered up the 
treasure as well as all his tracks, so that nobody will know where the treasure is. He 
returned to the ship and sailed off. 
Your job, Eöl, is to tell your fellow elves exactly where the treasure is. You must tell 
them how many meters they need to walk from the docks to the hidden treasure. 
 
As the design of Giant Steps unfolded and coalesced, I realized that it would be an 

environment wherein students could develop the notion of a variable as a specific quantity: a 
numerical value that is consistent within a local situation. The specific value of the variable 
would initially be unknown to the student but could eventually be determined through the 
student’s triangulation of available information about the two situated expressions, that is, the 
Day 1 and Day 2 journeys. Yet triangulating depictive information—as I learned by tinkering 
with the design myself and observing children attempt to solve the problem—carries certain 
implicit demands of structural precision and coordination. These smaller structural productions 
are what facilitate a logical progression whereby triangulation can be realized. I call these 
smaller productions Situated Intermediary Learning Objectives (SILOs). 

Qualitative data analyses suggested three SILOs for the Giant Steps design. 
 

1. Consistent measures. All variable units (giant steps) and all fixed units (meters) are 
respectively uniform in size both within and between expressions (days); 

2. Equivalent expressions. The two expressions (Day 1 and Day 2) are of identical magnitude—
they share the “start” and the “end” points, so that they subtend precisely the same linear 
extent (even though the total distance traveled may differ between days, such as when a giant 
oversteps and then goes back); 

3. Shared frame of reference. The variable quantity (giant steps) can be described in terms of 
the unit quantity (meters). 

 
Users can articulate SILOs mathematically before they attempt to solve the problem. 

Rather, the users may know the SILOs informally. For example, they may think about their own 
steps and perhaps of having buried an object in their backyard and using an informal 
measurement system to later determine its location. In the next section, I explain how the 
emergence of Giant Step’s SILOs allowed the design team to consider a new design architecture 
based on the emergence of these critical intuitions within the discovery-based learning process. 
 

3.2.1 The design architecture of a discovery-based learning sequence. 

The following section reflects the work of my design team. We used the SILOs to 
imagine a unique learning progression within Giant Steps. We decided to use the design’s SILOs 
to plan a technological version of the Giant Steps activity. The SILOs would form a blueprint for 
an activity architecture, wherein transitioning from each interaction phase to the next would be 
linked to demonstrating mastery over one of the SILOs. 

The idea was thus to step learners through the design, all the while enabling them to build 
and sustain subjective transparency of the emerging model. Each SILO is one aspect of the 
model that the learner would be required to build manually (virtually) before that property was 
instantiated and monitored automatically. Borrowing the notion of “levels” from popular 
computer games—that is, the gradual rewarding of manifest competency with increased power 
that is linked to increased task demand—in Giant Steps I level transparency. As users master 
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each SILO, they receive new control over the environment in the form of enhanced affordances 
that instantiate that specific SILO: the system then interprets the user’s intention to act and 
facilitates its execution by offloading the technical details of enactment. 

In Giant Steps, leveling transparency is engineered as follows. The user encounters a 
problem narrative and is encouraged to solve it on the screen. On the left there is a small flag (the 
“start” location). Below the line there is a standard drawing toolbox with buttons for either 
selecting a color (giant steps are red, meters are green), toggling between journey days (Days 1 
or 2), or editing (by either removing or clearing model elements). A floating “treasure box” (see 
in Figure 10, top-right corner) can be placed at any location. If a user selects the “Giant Step” 
button and then clicks on the screen, a red arch appears that connects the giant’s last location 
along the path (a grey node) to the clicked location (a new grey node). Similarly, “Meters” are 
green arcs. Using these interface utilities, the user is to solve the problem. 
 

 

 
Figure 10. In Level 1, Free Form, users create all parts of the model manually. Note that the 

giant steps (red arches) are not quite uniform size; neither are the meters (green arches). 
 
3.3 Sequencing Without Scaffolding: The Notion of Reveres Scaffolding 

SILOs are psychological constructs—they are about what a child knows (or, at least, 
about the design-based researcher’s best understanding of what the child knows). Levels, on the 
other hand, are technical constructs—they are about an activity’s technological affordances, that 
is, what a pedagogical system demands of, and performs for the user. And yet SILOs and levels 
are closely related: Each SILO articulates a knowledge criterion for entering a new level, and 
then each level, in turn, orients the child to achieve some next SILO. Table 1 delineates this 
relation between SILOs and levels in Giant Steps. The SILO sequence in this table should be 
interpreted as paradigmatic, not dogmatic. It is the typical “story” of a child going through what 
may or may not become a canonical learning sequence in this design. 
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Table 1. Leveling Transparency: Matched SILOs and Levels in the Giant Steps Technological 
Design 

SILO Level 
System Constraints, User Activity, and 

Behavior Criterion Interface 

1. Consistent 
Measures 

1. Free Form System offers no support in 
coordinating units or expressions. 

 

 Activity User builds all parts of the model 
manually; is perturbed by units’ 
unequal lengths within and between 
days; tries to equalize units via small 
adjustments, but witnesses that 
increasing one unit decreases an 
adjacent unit sharing a node.  

 

 Criterion User expresses frustration in 
equalizing units.  

 

2. Equivalent 
Expressions 

2. Fixed Meters System generates meter units in 
predetermined size and maintains 
uniform size automatically. 

 

 Activity User builds variables manually; is 
perturbed by variable units’ unequal 
lengths within/between days; tries to 
equalize variable units but witnesses 
that increasing one unit decreases an 
adjacent unit sharing a node. 

 

 Criterion User expresses frustration with 
managing uniform variable units 
particularly in an attempt to equalize 
the two propositions (the lengths of 
Days 1 & 2). 

 

3. Shared 
Frame of 
Reference 

3. Stretchy System monitors for manual 
adjustment to the size of any of the 
variable units and accordingly adjusts 
the size of all variable units.  

 

 Activity User adjusts the variable size to 
equalize the two propositions 
  

  

   

 
 Criterion User reads off the value of a variable 

unit in terms of the number of known 
units (meters) it subtends, e.g., one 
giant step is 2 meters long. 

 

 
I shall now elaborate on this table, referring to its screenshot images. In Level 1, “Free 

Form,” users construct all elements of their model in freehand, analogous to drawing with pencil 
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and paper. Some production imprecision naturally ensues, such as steps that are not quite the 
same size (see also Figure 10). The importance of precision (SILO 1) will arise only once the 
learner attempts to coordinate measures across two journeys, marked above and below the path, 
and encounters misfits that impede progress in building the model. Once users have articulated 
the imperative of consistent unit size and labored over implementing this aspect in their models, 
they are evaluated as having graduated SILO 1, “Consistent Measures.” As a first concession, the 
program enters Level 2, “Fixed Meter,” in which the system relieves the learner of producing 
uniform meter units (see also Figure 11). 

 

 
Figure 11. In Level 2, Fixed Meter, the meters are uniform in size while the giant steps remain 

variable. Users interact with a symbolic control (bottom-right corner) to generate meters. 
 

Unburdened by the task of maintaining uniform meters, the user now attempts to equalize 
the two journeys (Day 1 & Day 2) by adjusting the variable size. Note that one and the same 
variable, a giant step size, applies both within each journey day and across both days. Once the 
user articulates that the variable is consistent across the entire model, the interface enters Level 
3. 

In Level 3, “Stretchy,” not only is the meter unit size maintained automatically, as in 
Level 2, but here also the variable size, which is consistent across the model and changes 
uniformly. So when the user drags any of the nodes to the right or left along the path line, both 
the variable and fixed units react. The variables change in size accordingly (compare Figure 12a 
and Figure 12b), and the fixed units move left or right along the path line yet remain fixed in 
size. This supplementary affordance enables more felicitously to match the end points of Day 1 
and Day 2, as follows. 
 

 

  
a. b. 

Figure 12. In Level 3, Stretchy, green arches (meters) are invariable, while red arches (giant 
steps) are variable via uniform scaling. A new control (bottom-right corner) now enables the user 

to generate a specified number of giant steps, not only meters. 
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Note, in Figure 12a, that all the variable units are uniform, both above the line path (Day 
1 journey) and below it (Day 2 journey), and yet the two journeys do not end at the same 
location—the top trip ends farther from the start than the bottom trip. Recall that the green meter 
arcs cannot be adjusted (“Fixed Meter”), so that the only way of aligning the two trips would be 
by changing the uniform size of the red arcs. That is precisely what our hypothetical student did, 
so that the two trips ended in the same location (see Figure 12b). 

A new hypothesis arises from the “leveling transparency” technological design 
architecture—a hypothesis that informs this research study as well as a tentative theoretical 
insight. Namely, if users were introduced to the activity at Level 3, with the full slate of 
interaction shortcuts, they could not appreciate these functionalities as affordances, because they 
would not know what it is that each functionality affords. At the behavioral level, these users 
would not be able to articulate the computer’s functionalities as contributions to a co-enactment 
of this specialized cultural practice; as such, they would not achieve the SILOs, that is, they 
would not ground the conceptual content. In that sense, constructing transparency through 
reverse scaffolding is the process of coming to visualize an artifact’s invented functionalities as 
affordances. This idea of learners perceiving technological features as enhancing their agency is 
closely related to Pratt and Noss’s (2010) design heuristic implicating the epistemological root of 
mathematical concepts in children’s purposeful construction of utility for new ideas that are 
instantiated into designed artifacts in the form of interaction potentialities. 

Both utility and transparency speak to the notion of learning content through working 
with a ready-made tool. However, whereas “utility” suggests that the learner does not yet know 
what the tool can do, “transparency” suggests that the learner is already using the tool – already 
availing of its embedded utilities. With transparency you still have to figure out how the tool is 
doing what it is doing (i.e. how it is that you are doing-with-the-tool what you are doing). And 
yet in the Giant Steps for Algebra I am using “transparency” in the specific context that is neither 
of the above, that is, you are building the tool yourself. A key idea is that children themselves 
should build the situations they want to see and experience. I submit that learners will achieve 
this transparency optimally when they themselves have designed, or at least manifestly struggled 
to simulate and have explicitly wished for, the interaction constraints that constitute those 
utilities. 

So the best way to build subjective transparency of a tool, I maintain, is to implicate the 
desired utilities even before they are in fact instantiated into the device the learner is using. One 
might thus colloquially name the emergent affordances in Giant Steps the "if only’s," because 
they each fulfill the learner’s wish that "if only the device could do this or that." Leveling 
transparency is the guided, systematic, and incremental realization of the child’s rolling wish list 
into design features that introduce a functional relation between user input and system output. 
Finally, this approach might bear different, perhaps advantageous, effects for the child’s sense of 
self-efficacy and agency. Namely, it is a different experience to work with a ready-made artifact 
and figure out what its features are for, as compared to building an artifact by implicating its 
desired features. 

One might be tempted to describe Giant Steps as an exemplar of technological designs 
that scaffold algebra content. I hesitate to use that common term. In fact, the proposed design 
architecture for leveling transparency might better be described as reverse scaffolding. 
Scaffolding is the asymmetrical social co-enactment of natural or cultural practices, such as 
walking, cooking, or solving a mathematics problem, wherein a more able agent performs for 
novices elements of a complex activity. The novices’ participation is thus simplified, so that they 
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experience the activity’s flow, coherence, purpose, meaning, and efficacy as well as a sense of 
competence. Scaffolding, as described earlier in this paper, also includes the eventual fading of 
co-enactment and transfer of responsibility from the more capable agent or tool to the learner. 
The end result of a scaffolded learning sequence is the learners’ independent enactment of the 
task (see Figure 13). In Giant Steps, by way of contrast, the scaffolding is inherent to the design 
rationale but not the actual activity. Within this environment there is no co-enactment of any 
steps that students have not yet figured out themselves. The system co-constructs the model only 
after the student has discovered the necessity and functionality of each specific property of the 
model (see Figure 13). Thus the pedagogical system relieves users from executing what they 
know to do rather than what they do not know to do. 

 

 
Figure 13. Two different pedagogical learning sequences for the same content demonstrates how 

reverse scaffolding works. 
 

Reverse scaffolding is a pedagogical strategy birthed of constructivist theories of 
learning. Reverse scaffolding is embedded in a much larger world of pedagogical architectures. 
This dissertation seeks to more clearly delineate a small piece of turf within the larger debate. 
Scaffolding, by definition, is co-enactment. For socio-cultural theorists, co-enactment means 
scaffolding the production of a specific outcome in a “do-then-know” architecture. For 
constructivist theorists, co-enactment means scaffolding the discovery of a goal-oriented 
contribution in a “know-then-do” architecture. In classical educational practices, the target skill 
is co-enacted by the expert (or the tool) and novice from the get-go, with aspects of enactment 
gradually faded, transferred from the cultural agent and supporting technology to the learner. In 
reverse scaffolding, by contrast, the discovery is not scaffolded at all. Whereas some discovery-
based environments contain features that co-enact the design’s outcome, and the user eventually 
comes to realize these contributions, in GS4A the users re-organize what they know to address a 
problematic set of parameters, and in so doing the users imagine something that could help them. 
Only then do we co-enact. 
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3.4 A Design Synopsis 

In the interest of facilitating an improved understanding of the GS4A design, and to 
better inform future design efforts for technology-enabled educational activities (Gaydos, 2015), 
I will briefly describe the significant considerations that informed the end product described 
above. This section captures a synopsis of the design narrative (Hoadley, 2002), in which I 
highlight the significant developments as they unfolded over time. Based on data collected 
during pilot studies (Chase & Abrahamson, 2013) the design team understood the significance of 
participants constructing their own meaning from the available resources. And yet, as is the case 
with all technologically delivered designs, we had to carefully consider how we constructed the 
microworld. Or put another way, we wanted participants to play in the sandbox in particular 
ways, so we had to build a sandbox of particular specifications. And yet, we did not get these 
specifications right the first time around. The team approached the design process much like the 
those described by Schön (1983), as a cyclical reflection-in-action. During our design activities, 
the product would often ‘talk back’ in unintended ways, thus revealing our assumptions and 
working theories (Abrahamson & Chase, 2015).  

One of the interesting design conversations that we first encountered was the issue of 
perspective. We initially conjectured that we should intentionally design the microworld so that 
users had more visual clues. For example, we thought about showing a horizon line, thus the 
users’ vantage point would be from the side. In this view, the arcs simulate a trace of the 
movement a giant could have taken between steps. We later realized that adding perspective 
introduced the common-sense assumption that giant steps or meters would appear smaller in the 
distance, an accurate assumption that adds considerable undo complications. Similarly, we tested 
the idea of establishing a birds-eye point of view with the use of footprints. The user would place 
footprints heel-to-toe in the ‘sand’ to model the giants path. While this very visual heel-to-toe 
feature is compelling, we realized that it became more complicated when participants modeled 
the second part of the narrative. In ‘real life’ the giant would have walked in his or her footprints 
the second day, therefore it would be difficult for participants to differentiate between Day 1 and 
Day 2. Since identifying and correcting the discrepancies between Day 1 and Day 2 is central to 
facilitating the discovery of the SILOs, this design consideration was abandoned.  

Another feature of the current Giant Steps build that underwent discussion was the arc, 
either red or green, that signifies the space of either a giant step or a meter. The introduction of 
the arc is attributed to the origins of the number-line design, the work of Dickinson and Eade 
(2004). In one of the earlier builds of the microworld the arcs were programmed to have uniform 
heights. The result was that some arcs looked like semi-circles and some arcs looked like semi-
ovals depending on how the arcs were modeled. The unintended outcome of this programming 
decision was that each modeled arc, whether a giant step or a meter, looked remarkably different, 
thus prompting the user to attempt to make them uniform. Because we wanted participants to 
construct transparency for this exact SILO, we opted to reprogram so that the arcs always 
appeared as semi-circles.  

The final major design constraint that we explored was the blue line meant to indicate the 
giant’s path. In our initial builds we did not program any indicators of directionality for the user. 
We considered adding a small compass to the toolbar, similar to a map, and adding directionality 
to the story. We concluded that this added another layer of cognitive complexity that we could 
not control for which may lead to unintended results. Therefore, we decided that in Level 1, the 
blue path line would appear as the user created his or her model, and would remain. This 
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constraint ensured that users were not modeling an indirect path between the start and the 
treasure, and thus potentially calculating inadvertent irregularities. 

Once the base functionalities of the microworld were in place, we began designing the 
automated features. Based on pilot data we knew that participants typically attended to SILO 1 
and then SILO 2. Therefore, we introduced the automated meter and then the automated 
rescaling giant step. The automated meter, Level 2, generates meters that are of a fixed radius 
and can not be adjusted. This reflects the fact that a meter is of a specific size and should, 
therefore, also be so within the Giant Steps microworld. The automated-scaling giant steps 
feature, that simultaneously adjusts corresponding variables in and across both days uniformly, 
reflects the fact that all variables are uniform in size. Finally, the ‘teacher dashboard’ was 
developed so that the researcher could control when students transitioned between levels.  

Inorder to test the efficacy of the reverse-scaffolding activity architecture, we created a 
separate microworld. As will be described in more detail, this baseline condition comprised of 
the same story narratives delivered in precisely the same sequence. The only difference was that 
the baseline condition had fully automated modeling tools from beginning to end. 

 
3.5 The Research Questions 

This dissertation seeks to evaluate the proposed reverse-scaffolding design architecture 
by comparing learning outcomes achieved by students across reverse-scaffolding- and baseline 
conditions of the GS4A activity. Beyond assessing for a main effect of the experimental 
intervention, the dissertation seeks also to understand the process by which reverse scaffolding 
mediates this would-be main effect. 

The GS4A design offers a learning environment to address these instructional concerns 
within algebra. Additionally, GS4A is an opportunity to evaluate the “leveling transparency” 
framework—a framework that bears potential as a methodology to inform future designs of 
mathematics learning environments. Participants construct transparency through building the 
system of logico-qualitative relations using either the automated features of the baseline 
condition (BS), or the discovery-based progression of the experimental condition (RS).  The 
hypothesis is that the discovery-based (RS) condition will allow for greater subjective 
transparency, and quality of learning.  

The Reverse Scaffolding game mechanics are the activity-based implementation and 
concretization of Leveling Transparency. Therefore, finding the experimental (RS) condition to 
have better articulation of the logico-quantitative relational system, both in the activity and 
during the post-activity assessment questions, is an indirect evaluation of the Leveling 
Transparency rationale. The baseline is that the automated features of the baseline condition (BS) 
allow participants to interpret the relation between their input and the systems output; that the 
interface functionalities of the baseline condition support participants’ solution strategies and, 
therefore, how participants construct transparency of the structural properties for constructing 
and maintaining relational equivalence within the GS4A interface and the subsequent post-
activity assessment items. 

In order to evaluate the design rationale – leveling transparency – and the pedagogical 
implementation of this rationale – reverse scaffolding – the following questions arise: 

1.     How effective is an environment that sequences learners’ gradual construction of 
problem-solving tools? 

2.     To the extent that it is effective, what are the unique advantages of this environment? 
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3.     Does the reverse-scaffolding design principle of “leveling transparency” offer theoretical 
traction on the learning processes it ostensibly enables? 
In order to gather data that will eventually answer the above queries, this study has been 

designed so as to address the following research questions. 
 
1. Does reverse scaffolding increase student outcomes, as measured by the results of the post-

activity assessment? 
a. Composite scores from the New-Context items. 
b. Composite scores from the In-Context items. 
c. Composite scores from all items. 

 
2.     Does ‘leveling transparency’ for each structural property of the system of logico-quantitative 
relations, allow the participant to articulate thinking about the need for each structural feature? 

a.     That units are consistent. 
b.     That variables are uniform and variable. 
c.     That expressions are the same. 
 

3.     What are the mechanisms or opportunities that each condition provides that could explain 
performance difference between the two groups? 
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CHAPTER 4: Methods 

The study was conducted in the design-based approach to empirical research. This 
approach combines a framework for engineering products through iterative design cycles with a 
methodology for inferring generalizations for the science of learning (Cobb, Confrey, diSessa, 
Lehrer, & Schauble, 2003; Confrey, 2005; Edelson, 2002). The design process enabled me to 
explore the existing cognitive domain of algebra in search of potential explanations for why 
algebra is so difficult to access, and then use this to develop a conjecture that led to a proposed 
educational design,  Giant Steps for Algebra. Through making sense of data gathered in the 
process of evaluating this design, I developed an ontological innovation that in turn fed into an 
iterated re-design. What is unique to the design-based approach is that the findings inform the 
development both of design frameworks and theories of learning. Therefore, a design-based 
research project stands to offer findings across multiple stakeholders.  

The data were collected using a semi-structured task-based interview protocol (Clement, 
2000; Ginsburg, 1997). The data were analyzed using microgenetic analysis (diSessa, 2007; 
Kuhn, 1995; Parnafes & diSessa, 2013; Siegler & Crowley, 1991). 

 
4.1 Participants 

The design was implemented with two groups of participants. The first group ranged in 
age from 8 – 10 years. This population was chosen because typical elementary school curriculum 
begins to introduce formal algebraic concepts around this age, i.e. 3rd or 4th grade. Consequently, 
the content was considered developmentally appropriate. However, while this population has 
some understanding of relational equivalence, they do not have formal algorithmic fluency for 
solving linear propositions. The second group ranged in age from 13-15 years. This population 
was chosen because students of this age are taking a 9th grade Algebra I class, and should already 
be very familiar with relational equivalence and fluent with the algorithm for solving algebraic 
equations (see Table 2). 

 
Table 2. Participants 

 Condition 

Grade Level 

Study 

Reverse Scaffolding  

Control 

Baseline  

4th grade n = 11 n = 9 

9th grade n = 10 n = 10 

Total n = 21 n = 19 

 
Within each age group, participants were randomly assigned to one of two conditions, RS 

and BS. To assure the similarity of study and control groups we ensured equal numbers of 
students in each group across ability levels, as measured by their teachers’ report of 
mathematical ability. For the distribution of other demographic indicators across the study 
(Reverse Scaffolding) and control (Baseline) condition, see Table 3. 
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Table 3. Participants' Demographic Information 

4th Grade 9th Grade 

Indicator Reverse Scaffolding Baseline Reverse Scaffolding  Baseline  
White 6 4 1 1 

African 
American 

0 1 4 1 

Latina/o 3 0 0 2 

Multiple 3 2 5 3 

Asian 0 2 0 2 

American 
Indian 

0 0 0 1 

SES Free Reduce None Free Reduce None Free Reduce None Free Reduce None 
 1 0 10 0 0 9 7 2 1 7 1 2 

Math 
Ability Low Med High Low Med High Low Med High Low Med High 

 2 3 6 3 1 5 2 5 3 3 3 4 

 
For the participants in 4th grade, there is some variance between two groups across ethnic 

identity, and Socio-Economic Status (SES) only varied by 1. For students in the 9th grade, there is 
some variance between groups across ethnic identity, and SES only varied by 1. This indicates 
that the groups were similar enough across demographic indicators to ensure that these indicators 
can not explain any variance in performance. 

 
4.2 Materials 

Each participant worked on the GS4A web-based activity progressing from question 1 to 
question 9. Table 4. describes the relationship between the two conditions, the activity, and the 
interface. 
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Table 4. Activity Sequence and Interface Functionality for Each Condition  

Questions Condition 

Question Annotated narrative and algebraic expression. Reverse Scaffolding  Baseline 

1 Four giant steps forward. Then three giant steps 
forward and two meters forward. 

4x = 3x + 2 

All Manual All Automatic  

2 Three giant steps forward and three meters back. Two 
giant steps forward and then two meters forward 

3x-3 =2x+2 

All Manual All Automatic 

3 One giant steps forward and then eight meters. Two 
giant steps and then six meters. 

1x+8=2x+6 

All Manual All Automatic 

4 Three giant steps forward and then two more meters. 
Four giant steps forward and then one meter back. 

3x+2=4x-1 

Manual Giant Steps 
Automatic Meters 

All Automatic 

5 Three giant steps forward and then three meters back. 
One giant step forward and then one more meter. 

3x-3=x+1 

Manual Giant Steps 
Automatic Meters 

All Automatic 

6 Two meters forward, then two giant steps forward, then 
three meters forward. One giant steps forward, then one 
meter forward, then two giant steps forward, then one 

meter forward. 
2+2x+3=x+1+2x+1 

(2x+5=3x+2) 

Manual Giant Steps 
Automatic Meters 

All Automatic 

7 Five meters forward and three giants steps back. Two 
giant steps forward. 

5-3x=2x 

All Automatic All Automatic 

8 Two giant steps forward and four meters back. The one 
giant steps forward and three meters back. 

2x-4=x-3 

All Automatic All Automatic 

9 Three meters forward, then two giant steps, then four 
meters. Then two meters and three giants steps. 

3+2x+4=2+3x 

All Automatic All Automatic 

 
After completing the GS4A questions, all participants were asked a series of Post 

Activity Assessment items. 
These Post Activity Assessment items were designed to measure the participants’ 

subjective transparency for the structural properties of the problem. The whole post-assessment 
activity consisted of 5 items. These were broken up into two categories; New-Context problems, 
in which I measured for the application of learned skills (transfer); and (b) In-Context problems 
that targeted the three SILOs directly within the familiar GS4A setting. 

The New- Context problems (see Figure 14 and Figure 15) enabled the researcher to 
determine whether the participant could utilize the SILOs as construction strategies for 
establishing relational equivalence within new narrative contexts. 
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Two buildings are built next to each other 
and are exactly the same height. One 
building is 10 floors and has a spire that is 
20 feet on top of it. The other building is 11 
floors and has a spire that is 10 feet on top 
of it. 
How tall are the buildings? 
What do you need to do to figure this 
problem out? 
 

 
Figure 14. Two Buildings problem. 

 
In the two-buildings problem participants were presented with the narrative. (The image 

on the right is the researcher’s sketch of the two-buildings problem. It is included here only for 
clarification only and was not presented to the participants.) In this new situation the unknown 
magnitude was now floors, instead of giant steps. Additionally, in the two-buildings problem the 
logical model was vertical, while in GS4A it was horizontal. 

The two-buildings problem allowed the researcher to evaluate the extent to which the 
participants understood the GS4A tools’ (virtually) mechanical function in establishing the 
mathematical relationships for relational equivalence. The two-buildings problem was designed 
to measure whether participants were able to apply the SILOs that they had previously 
developed, in a new context. Namely it measured whether participants could identify and 
articulate the structural properties that establish relational equivalence in this new context. 

 
Two Building SILOs 
1. Units are consistent, in the two-building problem these are the height of the spires 

given in feet. 
2. Variables are uniform and variable, in the two-buildings problem these are the floors. 
3. The end points are the same, in the two-buildings problem that they are the same 

height. 
 
The two-building problem allows the researcher to understand whether the participants 

have constructed transparency for the (virtual) mechanical constructions, comparing across 
conditions, RQ 1, RQ 2. 
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My turtle, named Yurtle, is being tricky 
and won’t tell me how old she is.  
Help me figure out how old she is in 
human years.  
 
Yesterday she told me that she has lived 3 
turtle years and 2 human years. She also 
told her 4th turtle year will begin in 3 
human years. 
 

 
 

 

Figure 15. The Turtle Years problem. 
 

In the turtle years problem participants were presented with the narrative and asked the 
included questions. (The image on the right is the researcher’s sketch of the turtle years problem, 
included here only for clarification and is not presented to the participants). The turtle years 
problem provided no existing representational framework to draw from, whereas the two-
building problem lends itself to an existing representational arsenal, even if participants self 
identify as having limited drawing skills. The turtle years problem allowed the researcher to 
evaluate the design rationale by highlighting the extent to which the participants understood the 
GS4A tools’ (virtually) mechanical function in establishing the mathematical relationships for 
relational equivalence. The turtle problem asks the participants to identify and articulate the 
structural features that establish relational equivalence. 

 
Turtle Years SILOs 
1. Units are consistent, in the turtle years problem these are human years. 
2. Variables are uniform and variable, in the turtle years problem these are turtle years. 
3. The end points are the same, in the turtle years problem this is a point in time, namely 

present day. 
 

The turtle years problem allowed the researcher to understand whether the participants 
have constructed transparency for the (virtual) mechanical constructions, comparing across 
conditions, RQ 1, RQ 2. 

The In-Context post-activity assessment items consisted of a series of screenshots taken 
from the GS4A activity. These screenshots (see Figure 16) were solutions that were incorrect and 
violate at least 1 of the SILOs. The participant was asked to correct the item using paper and 
pencil. The In-Context problem set was designed to enable the researcher to identify whether the 
participants could articulate how the interface’s features contribute to successful problem-
solving. 

 
In this screenshot a hypothetical user 
created inconsistent meters. The 
participant must: (a) identify the user’s 
error; (b) redraw the scenario with 
consistent meters; and (c) determine the 
treasure’s location.  
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In this screenshot a hypothetical user 
created inconsistent giant steps 
(variables). The participant must: (a) 
identify the error; (b) redraw the 
scenario with consistent giant steps; and 
(c) determine the treasure’s location. 

 
 

In this screenshot a hypothetical user did 
not represent equivalence. The 
participant must: (a) identify this error; 
(b) redraw the scenario with matching 
end points; and (c) determine the 
treasure’s location.  

Figure 16. In-Context post-activity assessment items. 
 

Each In-Context problem violated at least one of the three tacit axioms, namely the 
SILOs. The participant was asked to identify which SILO has been violated and to correct the 
violation. Being able to correctly isolate the function that each SILO plays in constructing 
equivalence, demonstrated that the user has constructed transparency for this SILO, RQ 1, RQ 2. 

 
4.3 Procedures 

The researcher engaged all participants in problem-solving sessions using a semi-
structured task-based clinical interview protocol (see Appendix A). The participants worked 
individually during these problem-solving sessions. The interviews took place at school but 
outside of the math classroom, in a quiet room. During both the GS4A activity and the post-
activity assessment, the researcher–interviewer interacted with the participant much as a 
mathematics tutor would who is informed by reform-oriented pedagogical approaches (Ginsburg, 
1997). Before the participants began, the researcher–interviewer demonstrated all the suite of 
tools. The researcher–interviewer had the participant read the first half of question 1. Then the 
researcher-interviewer demonstrated how the tools could model a giant step, a meter, how it 
could switch between day 1 and day 2, and how the ‘undo’ and ‘clear’ functionalities work. Then 
the researcher–interviewer asked if there were any questions, and finally turned the mouse over 
to the participant.  

 
4.4 Data collection  

All interviews were video-taped for data collection purposes, and a screencasts were 
saved. After participants had completed all 9 questions in the GS4A activity, see Table 4., they 
were asked the post-activity assessment items. The complete data corpus consisted of 
approximately 50 hours of videography, with each participant’s individual interview and post-
assessment lasting between 50-70 minutes. 
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4.5 Data analysis 

The evaluation phase of the study consisted of assessment items designed to measure 
participants’ subjective transparency of the microworld and, as such, the proto-formal conceptual 
system they had developed for algebra. Using methods of interaction analysis (Jordan & 
Henderson, 1995) I began to identify patterns across the data corpus. Interaction analysts operate 
under the assumption that what a person knows and how they behave is socially constructed, and 
embedded in this social ecology. Therefore, measuring a participant’s understanding should 
include any meaningful actions that the participant has engaged in as evidence of situated 
knowledge. Interaction analysis methodologies move beyond only coding a participant’s 
utterances or written responses to survey questions by also coding all interactions that 
participants have with their environment. Using the video and screencast data, I was able to code 
participants interactions with and within the Giant Steps interface. Using grounded theory 
(Strauss & Corbin, 1990), I began to formulate a theory about how the SILOs can capture 
emerging understanding. Through iterations of data analysis, using both pilot data and early 
interviews from the data reported on here in, I created a coding scheme for measuring 
participants’ achievement of each SILO. Thus the SILOs served as scoring criteria for measuring 
individual students’ achievement on the post-activity assessments, with each SILO further 
graded into achievement levels. Two researchers scored participants’ responses based on 
demonstration of the SILOs. 

A scale of 0 – 4 was used to score participants’ work on the Turtle Years and Two 
Buildings problems: a score of 4 marks our judgment that the participant had demonstrated all 
three SILOs and determined a correct solution; and a score of 0 marks our judgment that the 
participant had not demonstrated any of the three SILOs and had not determined a correct 
solution (see Table 5 and Table 6) 

 
Table 5. Scoring Criteria for the Turtle Years Problem  

Measure Score 
SILO Applied to Turtle Years problem  

Consistent measures. 
 

All variable units (giant steps) 
and all fixed units (meters) are 

respectively uniform in size 
both within and between 

expressions (days). 
 

Consistent measures. 
 

All variable units [Turtle Years 
(TYs)] and all fixed units 
[Human Years (HYs)] are 

respectively uniform in size both 
within and between expressions 

(both ways that age is 
expressed). 

 

1 
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Equivalent expressions. 
 

The two expressions (Day 1 and 
Day 2) are of identical 

magnitude—they share the 
“start” and the “end” points, so 
that they subtend precisely the 
same linear extent (even if the 
total distances traveled differ 

between days, e.g. when a giant 
oversteps and then goes back). 

Equivalent expressions. 
 

The two expressions (Age 1. 
3TYs + 2HYs and Age 2. 4TYs 

– 3HYs) are of identical 
magnitude—they share the 

“start” and the “end” points, so 
that they subtend precisely the 
same linear extent, the same 

temporal length. 

1 

Shared frame of reference. 
 

The variable quantity (giant 
steps) can be described in terms 

of the unit quantity (meters). 

Shared frame of reference. 
 

The variable quantity [Turtle 
Year (TYs)] can be described in 

terms of the unit quantity 
[Human Years (HYs)]. 

 

1 

Correct Solution Yurtle is 17 Human Years old 1 
	
Table 6. Scoring Criteria for the Two Buildings Problem  

Measure Score 
SILO Applied to Two Building problem  

Consistent measures. 
 

All variable units (giant steps) 
and all fixed units (meters) are 

respectively uniform in size 
both within and between 

expressions (days). 

Consistent measures. 
 

All variable units (Floors) and all 
fixed units (Feet) are respectively 
uniform in size both within and 

between expressions (buildings). 

1 

Equivalent expressions. 
 

The two expressions (Day 1 and 
Day 2) are of identical 

magnitude—they share the 
“start” and the “end” points, so 
that they subtend precisely the 
same linear extent (even if the 
total distances traveled differ 

between days, e.g. when a giant 
oversteps and then goes back). 

Equivalent expressions. 
 

The two expressions (Building A 
and Building B) are of identical 

magnitude—they share the “start” 
and the “end” points, so that they 
subtend precisely the same linear 
extent, the same vertical length. 

1 
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Shared frame of reference. 
 

The variable quantity (giant 
steps) can be described in terms 

of the unit quantity (meters). 

Shared frame of reference. 
 

The variable quantity (Floors) can 
be described in terms of the unit 

quantity (Feet). 

 

1 

Correct Solution Both buildings are 120 feet tall 1 

	
For the second group of assessment items, the In-Context items, we used a scale of 0 – 3. 

A score of 3 marks our judgment that the participant both corrected the compromised SILOs and 
determined a correct solution in meters, whereas a score of 0 marks our judgment that the 
participant neither amended the SILOs nor determined a correct solution in meters. See Table 
7Table 8Table 9. 

 
Table 7. Question 1 Scoring Rubric 

Criteria Score 
Participant does not determine that the meters are not represented 
uniformly, does not determine a correct solution. 
 

0 points. 

Participant realizes that the ends are not aligned, either verbally or through 
redrawing it. 
 

1 point (a). 

Participant realizes that the meters are not represented uniformly, either 
verbally or through redrawing them. 
 

1 point (b). 

Participant realizes that the ends are not aligned, and that the meters are 
not represented uniformly, either verbally or through redrawing it. BUT 
DOES NOT CALCULATE FINAL SOLUTION IN METERS 
 

2 points. 
 

Participant realizes that the meters are not represented uniformly and that 
ends are not aligned, and determines a correct solution in meters (i.e. how 
far the treasure is buried from the start). 
 

3 points. 
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Table 8. Question 2 Scoring Rubric  

Criteria Score 

Participant does not determine that the Giant Steps are not represented 
uniformly, or thinks that it is not problematic. 

0 points. 

Participant realizes that the Giant Steps are not represented uniformly, either 
verbally or through redrawing them, but does not attend to a Shared Frame of 
Reference. 

1 point (a). 

Participant realizes that the Shared Frame of Reference is not represent, either 
verbally or through redrawing them, but does not attend to the Giant Steps. 

1 point (b). 

Participant realizes that the Giant Steps are not represented uniformly, that 
there is a shared frame of reference (1GS=2M). BUT DOES NOT 
CALCULATE A SOLUTION. 

2 points. 
 

Participant realizes that the Giant Steps are not represented uniformly, that 
there is a shared frame of reference (1GS=2M) and determines a correct 
solution in meters (i.e. how far the treasure is buried from the start). 

3 points. 

 
Table 9. Question 3 Scoring Rubric  

Criteria Score 

Participant does not realize that the ends are not aligned, or does not think 
that it is problematic. 

0 points. 

Participant realizes that the meter/Giant Step ratio is incorrect (SILO 3), 
either verbally or through redrawing them. 

1 point (a). 

Participant realizes that the ends are not aligned (SILO 2). 1 point (b). 

Participant realizes that the ends are not aligned (SILO 2), that the 
meter/Giant Step ratio is incorrect (SILO 3) but does NOT CALCULATE 
A CORRECT SOLUTION. 
 

2 points. 
 

Participant realizes that the ends are not aligned (SILO 2), that the 
meter/Giant Step ratio is incorrect (SILO 3) and determines a correct 
solution in meters (i.e. how far the treasure is buried from the start). 

3 points. 

 
After one analyst had coded all the post-activity assessment problems, a second analyst 

independently scored 21% of this data corpus. Results from an inter-rater reliability test were 
Kappa = 0.822 (p <0.001), 95% CI (0.646, 0.998), almost perfect agreement. Subsequent data 
analysis consisted of first evaluating for a main effect of the intervention by comparing post-



 

 49 

intervention achievements of the experimental and control groups using SPSS. Once I had 
determined a main effect and wished better to understand how the experimental condition led to 
higher achievement, I further performed qualitative micro-genetic analysis.
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CHAPTER 5: Results 

This chapter reports on findings and inferences from the dissertation’s empirical effort. 
Reporting on results of mixed-methods analyses, I detail the effect of the two experimental 
conditions—Reverse-Scaffolding and Baseline—on the participants’ output, and I compare these 
effects. I begin with results from quantitative-analysis comparison of post-activity assessment 
responses across conditions and age groups and, in so doing, discern patterns and trends in the 
data. In the subsequent quantitative-analysis sections, I present results of the statistical tests 
performed on the data. Lastly, looking closely at selected case studies, I employ qualitative 
approaches to further interpret the mechanisms that could explain differences between the two 
conditions. 

 
5.1 Quantitative Analysis 

5.1.1 Patterns across conditions.  

The scores for each question were grouped by frequency in order to determine patterns 
across participants and conditions. The scores were separated by grade level. I began by 
identifying patterns across the New-Context assessment items. Figure 17 presents the results of 
the Turtle Years New-Context problem. In the fourth grade participants in the Reverse 
Scaffolding (RS) group generally performed better. Two of the participants scored a 3 and six 
participants scored a 4. While in the ninth grade, three participants from each group received a 
score of 4. Yet, a majority of the RS participants received a score of 2 and the majority if the 
Baseline (BS) participants received a score of 1 or 2.  

 

	 	
Figure 17. Frequency of responses for Turtle Years problem.  

 
Figure 18 presents the results of the Two Buildings New-Context problem. For the 

participants in the fourth grade the majority of responses for both the RS and the BS groups 
received a score of 4, indicating that this questions was much more transparent to all. However, 
the RS group had more participants who received a score of 4, eight as compared to five. For the 
participants in the 9th grade, the RS group had majority of scores either of 4 or 1. The BS group 
received scores across all levels with a majority receiving a score of either a 2 or a 0.  
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Figure 18. Frequency of responses Two Buildings problem.  

 
Generally, for the participants in the fourth grade, across both New-Context questions, 

there is a concentration of receiving a score of 4, and the patterns of response frequency were 
similar between the RS and the BS conditions. Generally, for the participants in the ninth grade, 
across both New-Context questions, there is a concentration of receiving a score of 2 or less, and 
the pattern of response frequency were dissimilar between the RS and the BS conditions.  

Using ANOVA to test the distribution of scores for the composite score for New-Context 
items, I determined that the distribution was not normal between the study and control groups. 
This can often be the case with a small sample size, therefore, I used a non-parametric ANOVA 
in further analyses. 

Secondly, I wanted to compare the frequency of responses for each of the In-Context 
problems. Figure 19 presents the results for In-Context question 1. For participants in the fourth 
grade the concentration of scores received, comparing the RS and the BS groups, was fairly 
similar: the RS group received a higher number of scores in the 1(b) category. For participants in 
the ninth grade, the RS group received scores that were across categories 2 and 3, while the BS 
group received the highest number of scores in the 1(a) category. 
	

	
	

Figure 19. Frequency of responses In-Context Question 1.  
 

Figure 20 presents the frequency of responses for In-Context question 2. For participants 
in the fourth grade, comparing the RS and BS groups, the RS group received a higher number of 
scores in the 1(a) and 3 categories. For the participants in the ninth grade, comparing the RS and 
BS groups, the RS group received the highest number of scores in the 3 category, while the BS 
group received the highest number of scores in the 1(a) category. 
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Figure 20. Frequency of responses for In-Context Question 2.  

 
Figure 21 presents the frequency of responses for In-Context question 3. For participants 

in the fourth grade, comparing the RS and BS groups, the RS group received a majority of scores 
in the 2 category, while the BS group received a majority of scores spread across the 2 and 3 
categories. For participants in the ninth grade, comparing the RS and BS groups, the RS group 
received the highest number of scores in the 2 category and the BS group received the highest 
number of scores in the 2 category.  
	

	 	
Figure 21. Frequency of responses for In-Context Question 3.  

 
The pattern across all In-Context questions for participants in the fourth grade indicates 

that the RS and BS groups tended to share high or low frequencies of scores in the same 
categories, with the exception of Question 3. The pattern across all In-Context questions for 
participants in the ninth grade indicates that the frequency of scores for the RS and BS groups 
tended to be concentrated in different categories for each question.  

Using ANOVA, I tested the variance between the results on the post-activity assessment 
items across conditions, see Table 10. On the New-Context items, the reverse-scaffolding (RS) 
experimental group (M=5.17, SD=2.34) scored significantly higher than the Baseline (BS) 
control group (M=4.10, SD=2.76); t (38)=1.98; p=0.02. On the In-Context tasks, RS (M=5.88, 
SD=2.10) scored significantly higher than BS (M=4.60, SD=1.90); t (38) = 2.00; p = 0.02. 
Combining results from both post-activity assessment item categories for a Total score, RS 
(M=11.59, SD=3.57) scored significantly higher than the BS (M=8.71, SD=3.81); t (38) = 
2.46; p < 0.01 
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Table 10. Post-Activity Assessment Results  

 Reverse Scaffolding Direct Scaffolding 
 Mean S.D. Mean S.D. 

New-Context* 5.17 2.34 4.10 2.76 
In-Context* 5.88 2.10 4.60 1.90 

Total** 11.59 3.57 8.71 3.81 

* t (38)=1.98; p=0.02 

** t (38) = 2.46; p < 0.01 

 
However, using ANOVA to test the distribution of the composite score for the In-Context 

items I determined that this distribution was not normal between the study and control groups. 
Therefore I used a non-parametric ANCOVA in further analyses.  

In order to determine the overall main effect a composite score for all post-activity 
assessment item was also calculated, I call this dependent variable Total. Using ANOVA to test 
the distribution of Total across the study and control condition I determined that these scores 
were normally distributed. Therefore I used ANCOVA in further analyses. 

 
5.2 ANCOVA Results for Reverse-Scaffolding Versus Baseline Conditions 

In order to evaluate the experimental instructional methodology, I wished to compare the 
post-intervention competence of participants in the study condition (RS—reverse scaffolding) 
and control condition (BS—baseline). I expected to receive a positive difference indicating 
greater mean learning for the experimental condition as compared to the control condition. 

Before performing the further analyses I also checked whether the three dependent 
variables, TOTAL, New-Context items, and In-Context items, were or were not significantly 
different across reported math ability levels. TOTAL was significantly different among math 
ability levels. New-Context was marginally significantly different among math ability levels. In-
Context was significantly different among math ability levels. Given that I want to ensure that 
any differences between how the experimental and control groups performed can only be 
explained by the intervention, in further analyses I also controlled for math ability levels. 

For dependent variable TOTAL, controlling for math ability levels the study condition 
scored significantly higher than the control condition R = 0.271, p= 0.015. 

For the dependent variable New-Context, controlling for math ability levels the study 
condition scored significantly higher than the control condition, R = 0.187, p = 0.053. 

For the dependent variable In-Context, controlling for math ability levels the study 
condition scored marginally significantly higher than the control condition, R = 0.148, p = 0.055. 
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Table 11. ANCOVA Results  

 df f Adjusted R2 p 
New-Context 

1 3.99 0.19 0.05 
In-Context 

1 3.92 0.15 0.05 

TOTAL 1 6.57 0.27 0.01 

 
These results address RQ 1, which was:  
Does reverse scaffolding increase student outcomes, as measured by the results of the 

post-activity assessment? 
1. Composite scores from the New-Context items. 
2. Composite scores from the In-Context items. 
3. Composite scores from all items. 

 
The results clearly demonstrate that participants in the reverse scaffolding condition 

achieved better results on the post-activity assessment items. These results were persistent across 
all three post-assessment categories. I can conclude that reverse scaffolding does increase student 
outcomes. 

These results also address RQ 2, indicating that ‘leveling transparency’ enables 
participants to better articulate the structural properties of the model. In particular, the evidence 
gathered from the In-Context post-assessment items demonstrates that the participants who 
received the ‘leveling’ activity architecture better articulated the importance of each structural 
property. 

Does ‘leveling transparency’ for each structural property of the system of logico-
quantitative relations, allow the participant to articulate thinking about the need for each 
structural feature?: 

1. That units are consistent. 
2. That variables are uniform and variable. 
3. That expressions are the same. 

 

5.3 Discussion 

I am heartened by these results for several reasons. To begin with, the positive measured 
difference between study and control participants on the challenging transfer problems suggests 
the potential to further demonstrate a statistically significant effect given greater power, such as 
by working with more participants. Yet perhaps far more important, I view as an encouraging 
result the fact that at the very least experimental implementation of an instructional activity 
based on the innovative reverse-scaffolding condition resulted in learning gains that are as large, 
if not greater, than the baseline condition. These findings should urge researchers to question our 
implicit assumptions regarding best pedagogical practices for supporting mathematics content 
learning: perhaps, counter to the wisdom of the ages, direct scaffolding is not necessary. At the 
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least, the findings suggest that more research should be conducted to develop and evaluate the 
reverse-scaffolding instructional methodology. These further studies could continue to 
investigate the hypothetical construct of SILO so as better to understand its mediating 
psychological effect on student performance on mathematical tasks as well as implications of 
this effect for the design of instruction and assessment. 

Despite these encouraging results RQ3 remains unexplained.  
 
What are the mechanisms or opportunities that each condition provides that could explain 

performance difference between the two groups? 
 

In order to better understand the nuances of how each condition contributed to how 
students performed, I proceeded to perform qualitative analysis of the data corpus. Using micro-
genetic analysis, I hoped to be able to pinpoint subtle differences between the actions and 
utterances of participants that might help me characterize the cognitive affordances and tradeoffs 
of each condition’s activity architecture. 

 
5.4 Qualitative Results: Emergence of the SILOs 

The vignettes in this sub-section are organized as matched pairs, with compatible reverse-
scaffolding (RS) and Baseline (BS) study participants juxtaposed so as to bring out critical 
differences. I begin by featuring vignettes of two 4th-grade participants, an RS participant and a 
BS participant, both rated by their teacher as having “high” mathematical abilities.  

Susan (all names are pseudonyms) is working in the RS condition (study group). She is at 
Level #1, working on an informal narrative corresponding to the formal proposition “4x = 3x + 
2.” She has completed the Day 2 travel diagram (see in Figure 22 the four red loops above the 
horizontal line) and is now working on the Day 2 travel diagram below the line. 

 
Res.: Ok. So she goes… 
Susan: 3 giant steps and….. 
Res.: …and then.... 
Susan: 2 meters. (Susan switches an interface feature to “meters” and draws below the 

line 2 equivalent meters that subtend the 4th giant step immediately above the 
line.)  

Res.:  So she goes 2 meters and then she finds the right spot. 
Susan: Yeah  
Res.: So in your drawing did she find the right spot?  
Susan: Hmmm well yeah.  
 

 
Figure 22. Susan's construction for a Giants Steps story corresponding to the algebra proposition 

“4x = 3x + 2.”  
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Immediately, Susan has identified that the end point for both days is in the same screen 
location (see the treasure flag in Figure 22, on the right) and that, consequently, the 2 meters on 
Day 2 will subtend the same distance as the 4th giant step on Day 1. Despite some imprecision in 
her modeling execution, for example the meters are not of precisely the same screen size, Susan 
has constructed the transparency of equivalent expressions (SILO 2).  

I now turn to Karrie, a participant in the DS condition (control group), who is working on 
the same item (see Figure 23). 

 
Karrie: It says she walks 2 steps further ahead and finds the treasure. But that doesn't 

make sense because it is more back than the other treasure. (Karrie has drawn a 
model in which the giant steps are too large, so that the respective ends of Day 1 
and Day 2 are not co-located.)  

 

 
Figure 23. Karrie's construction for a Giant Steps story corresponding to the algebra problem “4x 

= 3x + 2.”  
Concerned by this misalignment between the end points of Days 1 and 2, Karrie suggests 

inserting additional meters. The interviewer responds by stating that doing so would violate the 
information in the story. The conversation ensues as follows. 

 
Karrie: I can change the size of the giant steps.  
 
Pursuing on her new idea, Karrie attempts to stretch the Day 2 travel diagram toward the 

right so that it reach the treasure flag. Specifically, she stretches the giant steps in Day 2 (the red 
loops below the blue line). Recall that in the direct-scaffolding condition the variable distances 
(all the red loops) are automatically interlinked, both within- and between days. Consequently, 
the variables in both Day 2 and Day 1 all stretched uniformly, and the two misaligned ends only 
became farther apart! Karrie then attempted the same maneuver by decreasing the step size in 
Day 1, but she stopped before the two ends met. 

 
Karrie: It moves the whole thing? 
 
Karrie was surprised to witness the automated-scaling feature that simultaneously adjusts 

corresponding variables in and across both days uniformly. Karrie had had meant to equalize the 
linear extents of the two days by first adjusting Day 2 and only then Day 1. Thus whereas Karrie 
was demonstrating SILO 3, equivalent expressions, she was doing so with disregard to SILO 1, 
consistent measures. Moreover, Karrie did not appear to appreciate the implication of uniform 
variable size for the fidelity of her story model. To Karrie, this feature is not transparent. 

We now turn to our second comparison, two 9th-grade participants, both rated by their 
teacher as having “medium” mathematical abilities. Taylor is working in the RS condition. He is 
at Level #2, working on the narrative corresponding to the formal proposition “2 + 2x + 3 = x + 1 
+ 2x + 1.” He has just begun reading the problem. 
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Figure 24. Taylor's completed model with the components reorganized for simplicity.  

 
Taylor: Ok. Two meters, (begins by drawing 5 meters, see Figure 24). 
Res:   Wait, what did you do? 
Taylor:  I put all the meters first. ‘Cause, like, they’re all going to go to the same place.   

(Taylor performs a sweeping hand gesture from left, the start, to right, the treasure 
location; see Figure 25). It doesn’t really matter, the order. 

 

 
Figure 25. Taylor moves his hand from the start (left side of the screen) to the treasure (right side 

of the screen).  
 

Taylor’s insight captures an auxiliary objective for the design of this particular problem 
item. We intentionally created this item so as to foster an opportunity for participants to combine 
units (meters) and variables (giant steps). And yet the participants would need to be motivated to 
discover the utility of such combining. By stating that the order of distances traversed (the 
situated addends) does not change the final destination (the sum) Taylor is taking advantage of 
the commutative property of number, as instantiated in the form of a string of concatenated 
segments, to create a model that better utilizes the number-line solution form. Taylor clearly 
demonstrates that he has a flexible understanding of the model he is creating and has achieved all 
of the SILOs. In fact, Taylor is thoughtful in discussing how he can utilize this know-how so as 
to improve and interpret his model. His flexibility is reflected in his scores on the New-Context 
post-intervention assessment, where he received a score of 6 out of 8. 

I now turn to Irene, a BS participant working on the same problem as Taylor. Recall that 
the BS condition automatically generates fixed meters and automatically rescales all of the giant 
steps for the participant. Irene has just completed her model of the story narrative and realizes 
that the ends are not aligned (see Figure 26a). 

 
Irene: Umm, So you need to make it bigger (she stretches the model so that the ends 

meet, see Figure 26b). There. 
Res:  Ok, so now they meet? 
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Irene: And I think each step is worth, .... not worth exactly (Irene appears to be groping 
for the word “equivalent”) ...3 meters? 

Res: hmmm 
Irene: So…. 
Res: What makes you say that? 
Irene: Like first on day 1 (switches the interface so that Day 1 is highlighted) it is 2 

meters (scrolls over the first giant step on Day 2, which corresponds to 2 meters 
and a gap on Day 1). And I think if you had 1 more meter it would be 3 (scrolls 
over the gap, see Figure 26b – After stretching). 

 

  
a. Before stretching b. After stretching 

Figure 26. Irene's model before and after stretching.  
 

Irene has achieved SILO 3, “shared frame of reference,” as observed through her actions 
to align the ends of her Day 1 and Day 2 models in an attempt to determine how many meters 
make up one giant step. However, when it comes to determining a solution, Irene warrants her 
claims based on available visual information rather than the narrative information. She states, “I 
think if you had 1 more meter,” yet she does not cross-check with the situation narrative. 
Furthermore, Irene’s solution strategies do not exemplify the same level of sophistication and 
flexibility as her classmate Taylor. The results of this lack of flexibility are reflected in her 
scores on the New-Context post-activity question where she received a total score of only 3 out 
of 8.  

Whereas there are moments in Irene’s intervention that indicate her thoughtfulness, this 
thoughtfulness was not apparent later in the New-Context post-intervention assessment. The 
baseline task-flow architecture of the intervention had enabled Irene to develop an effective yet 
inflexible and non-transferable modeling routine: (a) model each of the two Day narratives, 
respectively above and below the line; (b) stretch or shrink one or both day diagrams until the 
ends meet; and (c) calculate the meter value of a step. Importantly, the uniform 
stretching/shrinking of the variable quantity was a given automatic feature of the interaction. 
Irene never had to discover, challenge, or monitor this feature, and so this feature remained 
opaque—the feature did not appear to be grounded in any insight on the modeling system as 
relating to the narrative situation. 

Note that we are not critiquing Irene. Her reasoning was logical, rational, and consistent. 
Rather, we underscore that Irene’s reasoning was bound the particular contexts whence it 
developed. Irene’s hands-on problem-solving algorithm appears markedly different from the 
varied strategies Taylor employed. In the reverse-scaffolding task-flow architecture (gradual 
automatization) the user must modify the solution algorithm with the introduction of each new 
level. Doing so, I believe, offers the user opportunities to devise new and adaptive forms of 
manipulating the model’s structural features as well as opportunities to interpret the emerging 
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structural systems from multiple perspectives. Thus the user develops subjective transparency of 
the modeling system by exercising flexible visualization and manipulation. In particular, the user 
devises new operatory schemes that become articulated as the SILOs. 

Consider the case of Taylor. Recall that the task-flow change from Level 2 to Level 3 
introduces the automatization of uniform Giant Steps. The moment this feature was enabled, 
Taylor recognized its utility, exclaiming, “Oh, I need that!” He immediately knew how this new 
control would function, understanding that it would generate and maintain consistent yet 
automatically scalable giant steps (SILO 1). In turn, the transparency of this Level 3 utility 
enabled Taylor to instantiate SILO 3, the shared frame of reference between variable and known 
quantities. 

Now compare Taylor’s case to that of Irene. During the post-intervention In-Context 
assessment, Irene is asked to interpret and possibly fix an incorrect model created by a 
hypothetical participant (see Figure 27). 

 

 
Figure 27. In-Context Question 2.  

 
Irene correctly identifies that the giant steps and the meters in this item are each modeled 

as non-uniform. In response, she wishes to enact her three-step solution strategy—model, 
stretch/shrink, calculate—so as to amend the apparent irregularity. Irene makes the following 
suggestions: (a) Pointing to the end nodes on the right that are not perfectly aligned, she says, 
“The giant steps on the bottom should be moved (toward the left) so that the ends (on the right) 
meet”; (b) “They should put big meters in big giant steps, and small meters in small giant 
steps…”; and finally (c) “…so that a giant step is 3 meters.” Irene’s suggestions for fixing the 
model intimate that she does not view the interaction affordances as instantiating critical features 
of an emerging conceptual system. At no point in her proposed solution does she directly address 
the non-uniform size of the giant steps. Her second solution step violates SILO 1, consistent 
meters. Her last solution step, while adhering to SILO 3, shared frame of reference, is incorrect. 

Unlike Taylor, who expressly predicted the interface’s affordances for the modeling the 
problem situation, Irene never wondered about the interface’s action capabilities that were 
present in the construction of the model, namely that the interaction was manual. Irene is process 
oriented—she has developed an effective protocol for solving a particular class of problems 
under particular interaction conditions, and yet she never had to will those interactions and then 
acknowledge their arrival. She cannot appreciate how the model maintains or violates the SILOs, 
because the model’s functions are opaque to her.  

 
5.5 Emergence of the SILOs via Guided Problem-Solving Interaction with Educational 
Technology 

Qualitative analysis of the videotapes is enabling the research team to develop deeper 
understandings of the experimental activity. In this subsection we present excerpts from two 
contrasting sample interviews, one with Lucy (study group: reverse scaffolding), and one with 
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Mary (control group: direct scaffolding). (Both are pseudonyms.) These samples are arguably 
comparable in that the participants were of similar age (9[9], 9[11]) and both were considered by 
their teacher as on the high end of proficiency. Furthermore, these students scored similarly on 
the post-activity assessment questions, with Lucy scoring a total of 15 points, and Mary a total of 
14.  

Based on these analyses we cautiously claim that the experimental-condition students 
were more likely to develop subjective transparency of the emerging conceptual system as 
compared to the control-group students, because the reverse-scaffolding condition created for 
them greater need to figure out and articulate for themselves the fundamental principles of 
effective mathematical models for the problem scenarios. 

 
5.5.1 Emergence of SILO 1 “consistent measures,” the case of the unit “meters.” 

Lucy (reverse-scaffolding study condition, RS) is working within the instructional phase 
on Question 2. This item is composed of a Day-1-and-Day-2 narrative corresponding to the 
formal proposition “3x - 3 = 2x + 2”. Lucy is at Level 1 of the activity regime, and so the 
software is not providing her with any automation for the SILOs. With respect specifically to 
SILO 1, consistent measures, Level 1 means that Lucy must proactively build and maintain 
consistent measures as she interacts with the interface. In just over 4 minutes, Lucy has 
completed modeling both the Day 1 and Day 2 travel narratives (see Figure 28). 

 

	
Figure 28. Screenshot from Lucy's work-in-progress on the "3x - 3 = 2x + 2" Giant Steps 

narrative. Day 1, above the line, models “3x - 3” as running from left to right with three large red 
arcs (3x) and then retracing back toward the left with three small green arcs (“- 3”). Day 2, below 

the line, models “2x + 2” as two large red arcs (2x) followed by two small green arcs (“+ 2”). 
Lucy has modeled meters as consistent measures both within each of these two fragments—
above the line and between these two fragments (compare the large arcs above and below, 

compare the small arcs above and below). However the Day 1 and Day 2 model fragments do not 
bring the giant to the same destination. 

 
We join the tutor–student dyad just as Lucy is fiddling with the size of the meter units in 

an attempt to make both diagrams reach the exact same location. In her initial model, she had 
made the meters of equal size both within- and between-days, however upon reflection she 
realized she must adjust all these sizes so that Day 1 and Day 2 diagrams bring the giant to the 
same destination. Figure 28 shows a screenshot from the work in progress. Note how the “3x - 3” 
model fragment (Day 1, above the line) extends further to the right as compared to the “2x + 2” 
model fragment (Day 1, below the line). Lucy believes that she could make ends meet by taking 
measures to adjust the sizes either of the giant steps or the meters. She begins by adjusting the 
meters on Day 2. In the transcription below, parenthetical texts, such as “(Day 1)” serve to 
clarify for the reader the interlocutors’ communicative intent as suggested by their non-verbal 



 

 61 

multi-modal utterance, including screen actions as well as various deictic gestures (e.g., pointing 
toward elements on the shared visual display). 

 
Res.: Well I noticed that you made meters smaller on this day (Day 2). 
Lucy: Yeah. So I should make them smaller on this day (Day 1) too probably. 
Res.: Yeah? Why don’t you try that. I think that could probably make sense. Why do 

you think that you should probably do that? 
Lucy: Because then they will all be the same size, and then you will be, umm… I’ll be 

able to the see whether it’s still on that point (Lucy points to where she expects 
the treasure flag to be after the adjustments, which is slightly to the right of it’s 
current placement, see Figure 29). 

 

	
Figure 29. Lucy indicates on the computer monitor where she anticipates Day 1 and Day 2 travel 

destinations will be co-located once she adjusts the meters. 
 

We interpret Lucy’s multimodal utterances (i.e., her speech that is ecologically coupled 
to the screen via deictic gesture) as indicating an achievement of SILO 1—she apparently knows 
that meters should be of consistent size both within and across days. Moreover, she anticipates 
that by executing this with fidelity she will have access to pertinent information that will help her 
solve the problem at hand, as demonstrated through her projection of the new co-located end 
point. 

We now turn to Mary, a participant in the Baseline condition (BS). Mary is working on 
the same item as Lucy, “3x - 3 = 2x + 2”. However, Mary’s BS interface a priori produces 
meters of fixed size that are therefore automatically consistent both within and across Day 1 and 
Day 2, and the interface also recalibrates all giant steps when any of them is resized. Mary has 
been working on this problem for almost 10 minutes. She completed both Day 1 and Day 2 travel 
models and was unable to determine a solution (see Figure 30). Mary has just erased her diagram 
and is starting over. We join the researcher–student dyad as Mary begins modeling the first 3 
giant steps (large red arcs) and is adjusting their size exploratively: she stretches, shrinks, and 
finally leaves them slightly extended as compared to her erased diagram. 
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Figure 30. Working on "3x - 3 = 2x + 2", Mary has modeled the Day 1 and Day 2 narratives. The 

Day 1 and Day 2 journeys do not end at the same location, and so Mary has not solved the 
problem. 

 
Mary:  Maybe the giant got bigger. 
Res.:  Yeah, maybe the giant got bigger, or smaller, I don’t know. It’s a different giant, 

that’s all I know 
Mary:  So Day 1 and Day 2 are different giants? 
Res.:  No no no, it’s a different giant from Question 1. 
Mary:  (Slightly stretches the giant steps again, then creates three small green arcs 

running back toward the left for the “-3”, see Figure 31) Ohhh, so… 
Res.:  What happened? 
Mary:  So the meters are always the same. 
Res.:  Does that make sense? 
Mary:  Yeah, so the meters are always the same, you can move the giant steps but not the 

meters. 
 

 
Figure 31. Mary is still working on modeling the "3x - 3 = 2x + 2" story. She has now stretched 

the giant steps so that they have each become 3 'meters' in length.  
 

Recall that Mary is working under a condition where all measures are always uniform in 
size—all giant steps are always equal to each other, and all meters are always equal to each 
other—only that whereas the giant steps are adjustable (they all adjust simultaneously) the 
meters are not adjustable (they are of fixed size). Mary’s insight into the consistent measure of 
the fixed meters unit in this interface is apparently facilitated by way of juxtaposition with the 
variable size of the giant-step unit measure. Her inflection indicates surprise at this discovery, 
and she reiterates her discovery thrice, as if memorizing it as a new rule. 

In each of the episodes the participant has arrived at the conclusion that meters, within 
this microworld, should remain consistent in size both within and across days. What differs 
between the two episodes is how this knowledge surfaces, and how it is used. Lucy constructs a 
model in which her meters are fairly consistent, and yet, when she is unable to determine a 
solution, she can imagine how shrinking them uniformly, will solve the problem without 
violating what she has established as a viable measuring practice. Being able flexibly to adjust 
meters and giant steps vis-à-vis each other and the narrative indicates that Lucy has constructed 
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subjective transparency for consistent measures by experiencing an opportunity to exercise 
agency in making equal units. Mary, too, is reasoning about the consistency of meter units, and 
yet she does so only as a feature of the interface. Mary, like Lucy, appreciates that the meter 
units behave differently from the variable units, and yet she conceptualizes the relation between 
meters and variables not as an instrumental function advancing the solution process but as some 
arbitrary interface feature she has detected. Thus Mary did not experience an opportunity to 
appreciate the potential utility of this embedded feature; she did not develop subjective 
transparency for this received feature. Per Freudenthal, Mary is a victim of a didactical crime, 
wherein the interface constraints, which were designed to scaffold her learning activity, in fact 
robbed her of an opportunity for discovery by imposing a mathematical notion as an immutable 
rule. 

 
5.5.2 Emergence of SILO 1 “consistent measures,” the case of the variable unit 

“giant step.” 
We turn now to two excerpts from the interview videography when our participants Lucy 

and Mary each articulate their emerging understanding that the variable unit measure, a giant 
step, should be consistent across the diagram model of the narrative. 

Lucy is working at Level 1, Question 1—a story narrative that corresponds to the 
algebraic proposition “4x = 3x + 2”. Recall that Lucy is working with an interface that provides 
no automation of her modeling activities. She has completed diagramming both Day 1 and Day 2 
and is using her diagram to determine how many meters away from the start point the treasure is 
buried (see Figure 32). Lucy’s diagram indicates that she has understood that Day 1 and Day 2 
share the same end point, and that the corresponding giant steps in her Day 1 and Day 2 model 
fragments (above and below the line) should match in size, that is, they should subtend the same 
distances along the “story line”. It is precisely this coordination that is of interest. 

 

 
Figure 32. Screenshot of Lucy's completed diagram for the expression "4x = 3x + 2."  

 
Res.:  So I noticed the other thing that you’re doing, that is interesting to me, is that on 

Day 2 you put the giant steps in the same place that you put the giant steps on Day 
1. 

Lucy: Yeah. 
Res.: Why did you do that? 
Lucy: Umm, I don’t know. I just wanted to start at the same point (scrolls over the giant 

steps from left to right), so that it gets to the same spot (scrolls over the treasure 
flag) 

Res.: Right. And you feel like it would make sense that she would, if she was trying to 
get back to the same place, she would walk in the same spots. 

Lucy: Yeah (nods her head several times). 
Res.: So do we know how big a giant step is? 
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Lucy: About this big (scrolls over the first giant step, alternating between the 
corresponding giant steps above and below the path line). 

Res.: About that big. 
Lucy: Yeah. 
Res.: But it doesn’t look like you drew them all the same size. Did you do that on 

purpose? Or were you just approximating? 
Lucy: Yeah. I was trying to get, (moves her hands, with the palms facing each other, 

together and apart a few times, using small movements) just the average. 
 
Lucy has expressed in two different forms her knowledge that giant steps should be of 

uniform size: (a) her between-day giant-steps constructions on the interface are paired above and 
below the line (their respective start- and end-points literally share the same node locations), and 
upon interrogation she vigorously asserts that this is logical; and (b) she discounts apparent 
within-day variability in giant-step size as construction flukes bearing no pragmatics intent—
they are still conceptualized as constant.  

By comparison, Mary is working on Question 1, a story narrative that corresponds to the 
proposition “4x = 3x + 2”. She has modeled Day 1 of her diagram with 4 giant steps. The 
transcription begins with Mary’s asserting that the total distance from the starting point to the 
treasure is 8 meters.  

 
Mary: 8 meters. 
Res.: 8 meters. Why do you think 8 meters? 
Mary: Because, if 3 giant steps (scrolls over the first 3 giant steps in her model) and 2 

meters (scrolls over the 4th giant step in her model) is the same as 4 giant steps. So 
it would be like you can take away 3 giant steps from both of them. And then 
you’re left with, it’s like the same amount of distance, like right there (she “holds” 
the size of a giant step between her thumb and index, see Figure 33). One is 2 
meters, and one is a giant step. 

Res.: Got it. So how does is end up being 8 in the end? 
Mary: Because it’s like 2 (scrolls over the 4th giant step), and 2 times 4 (scrolls over each 

giant step from right to left) is 8. 
 

 
Figure 33. Mary uses her thumb and index fingers to measure the screen space that she believes 

is 2 meters long. Then, assuming that all other giant steps in her model are of equivalent size, she 
calculates 4 giant steps as 8 meters.  

 
While Mary does not formally articulate that all giant steps in her model must be 

consistent in size. Rather, she calculates them as such and solves the problem correctly. 
Both participants solve the problem and both numerically translate giant steps into 

meters, therefore the point of comparison here is very subtle. Lucy’s articulation indicates 
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intentionality, she made a decision to generate an ‘average,’ and consequently she has 
cognitively produced this construction property. Lucy enacted an internal thought process so as 
to regulate her end product. Mary, on the other hand, receives this regulation from the interface 
itself and never questions the validity of this construction property. Returning to the Freudenthal 
for a moment, it appears that the interfaces constraints, designed to scaffold Mary’s production, 
may have robbed her of discovery and simply introduced consistency among giant steps as a 
rule. 

5.5.3 Emergence of SILO 2 “equivalent expressions” and SILO 3 “shared frame of 
reference.” 

Lucy is working on Level 1, Question 3. The item depicts a story corresponding to the 
algebraic proposition “1x + 8 = 2x + 6”. Three minutes into her work on this item, Lucy’s 
diagram was non-normative in two ways (see Figure 34): (a) the model presented each giant step 
as 4 meters long (it should be 2 meters long); and (b) the Day 1 and Day 2 model fragments did 
not end at the same destination as they should.  
	

 
Figure 34. Lucy is working on "1x + 8 = 2x + 6". This is a screenshot of her initial yet faulty 

model, where giant steps are each equivalent to 4 meters, and the journey ends are not co-
located. 

 
Lucy attempts to repair this mismatch by shrinking the giant steps on Day 2, so that they 

are each 3 meters long (see Figure 35). Lucy is talking about how the giant steps and the meters 
need to match across days, what parts of the story are the same across Day 1 and 2, but is not 
sure what to do next.  

 

 
Figure 35. Lucy is still working on "1x + 8 = 2x + 6". This is a screenshot of her model after 
micro-corrections. Now each giant step is equivalent to 3 meters, and the ends still are not co-

located. 
 

Res.: You’re right, the meters always match up from Day 1 and Day 2. So what’s 
different? 

Lucy: This (scrolls over the first giant step). 
Res.: The giant step. 
Lucy: Yeah. 
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Res.: And so what’s different? 
Lucy: This (scrolls over the second giant step on Day 2, which currently corresponds to 

3 meters on Day 1). 
Res.: And in the story what part is that? 
Lucy: That is in Day 2. (She marks another 1 giant step and 6 meters.) 
 
Lucy is talking about the difference between Day 1, 1 giant step and 8 meters, and Day 2, 

1 giant step and 6 meters, but the researcher probes for more clarification. 
 
Res.: She takes 1 giant step. Do you mean like an extra giant step? 
Lucy: No. 
Res.: She takes 2 giant steps. 
Lucy: Oh yeah, she takes 2 giant steps. And then she takes 6 more meters (scrolls over 

the meters). 
Res.: Right. How is that different from Day 1? 
Lucy: On Day 1 she only takes 1 giant step and then 8 more meters. 
Res.: 8 more meters. So what’s the difference? 
Lucy: It’s 1 that she is taking…She took 1 more giant step but 2 less meters (she scrolls 

over the 2nd giant step on Day 2, where she is focusing her comparison). So the 
giant steps are supposed to be 2 meters, I think. 

Res.: Oh, what makes you say that? 
Lucy: Because this is (scrolls over the treasure site), 8 is 2 meters more than 6. And this 

(scrolling over the Day 2 part of the diagram) needs to be 2 meters more. 
 
Lucy has used her faulty diagram to examine characteristics of the story that allow her to 

think about which elements are equivalent. She is grounding her thought process in the 
knowledge that the two expressions are equivalent, they must end at the same location, and she 
can therefore manipulate her faulty diagram in small ways, even in her imagination, so as to 
achieve this parity. Simultaneously, Lucy is establishing a shared frame of reference by linking 
the difference in meters from Day 1 and Day 2 to the additional giant step on Day 2. We now 
turn to Mary. 

Mary is working on Question 6, a story narrative corresponding to the proposition “2 + 
2x + 3 = 1x + 1 + 2x + 1”. She begins by generating a complete model (see Figure 36a). She then 
deletes her Day 2 diagram and re-models it, changing the order of the story’s features (see Figure 
36b). We join the dyad as the interviewer asks Mary about this rearrangement. 

 
Res.: So why do you think it works better to put the meter there? 
Mary: Because then you can tell (scrolls over the first 2 giant steps in her model) how 

much… Oh it doesn’t really work that much better. Oh wait, because then you can 
tell how many meters are in a giant step right here (scrolls over the final giant 
step). 

Res.: Oh, OK.  
Mary: Because it lines up. 
Res.:  And how do you know that you’re allowed to do that, to change the order? 
Mary: Because you still walk the same amount of distance. Like, if I walked 1 miles and 

then 1 foot, it would be the same as if I walked 1 foot and then I walked 1 mile. 
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a. b. 

Figure 36. Screenshots of Mary's model for the problem story that corresponds to the algebraic 
proposition "2 + 2x + 3 = 1x + 1 + 2x + 1": (a) a completed model exactly following the 

narrative, (b) a reordering of the narrative’s components that enable her better to determine 
visually the size of each giant step—note that the Day 2 giant step, below the line and on the 

extreme right, subtends 3 meters above the line. 
 

Mary thus first performed a diagrammatic reordering of the narrative components and 
then cited her findings as unequivocal evidence supporting her conclusion. We interpret this 
behavior as indicating that Mary clearly understands that the two narratives depict journeys of 
equivalent extent and that the variable and fixed quantities mutually reference each other. 

While both participants clearly demonstrate an understanding that the expressions are 
equivalent and that enacting this will result in finding a shared frame of reference, the quality of 
this understanding is instrumentalized by the tool that they are using. Lucy, using a more flexible 
interface, uses a combination of her imagination and her model to ‘see’ the completed narrative. 
While Mary, using a less flexible interface, must physically reproduce the model. It would seem 
that the more rigid interface garners a more rigid response, while the more flexible interface 
allows for a more flexible, if not even incomplete, model.  

 
5.6 Discussion 

The qualitative analysis reported herein sought to capture and convey nuances of the 
process by which participants developed an emerging understanding of algebra. This 
understanding was manifest in evidence that the students were building subjective transparency 
for the proto-algebraic logico-quantitative system embedded within the Giant Steps for Algebra 
problem scenarios. In particular, I was able to depict the participant’s understanding as it 
emerged along successive moments of the interview. The qualitative analysis thus addressed the 
final research question (R3): 

What are the mechanisms or opportunities that each condition [reverse-scaffolding vs. 
baseline] provides that could explain performance difference between the two groups? 

The data corpus exemplifies how the reverse-scaffolding design architecture, and in 
particular the paced introduction of interaction features into the activity, offered the study 
participants unique learning opportunities. In the absence of ready-made interaction functions, 
the study participants were obliged themselves to intuit, infer, determine, and construct features 
of the mathematical system. By way of contrast, participants in the baseline condition, who 
received the interaction features ready made, did not experience as much insight into the 
embedded mathematical principles. Corroborating earlier constructionist research, the qualitative 
analysis thus indicates that students can develop subjective transparency of mathematical 
concepts by creating, articulating, and generalizing the structural properties of the models they 
use to solve situated problems. Furthermore, an activity that is designed so that students have 
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agency in the discovery and articulation process yields greater subjective transparency as 
compared to a compatible activity where students do not experience this agency.  

Finally, the results of this study highlight the importance of differentiating between 
learning to use a tool and using a tool to learn. In many cases, baseline participants developed a 
know-how (Ryle, 1945) that was situated in the particular immediate context and subsumed the 
tool. What more, they could articulate how they were using this available tool to solve the 
problem at hand: they used the ready-made interface features and often understood the 
relationship between their mousing actions and changes on the screen. However their 
understanding was only ‘screen deep.’ For example, baseline participants understood that the 
tool could stretch or shrink giant steps, but not how this action functions within the larger 
mathematical system. Learning how to operate a tool did not lead to compatible opportunities to 
develop subjective transparency of the mathematical system. The tool’s ready-made utilities 
were never interrogated with respect to problems of practice they each solved. The utilities were 
conceptualized as manipulative features, not as solutions. Just as in the case of bicycle gears, one 
can become highly skilled in using an artifact’s utilities without ever questioning their rationale 
or build, without looking under the hood. Using a ready-made tool does not necessitate the 
development of situated intermediary learning objectives (SILOs). 

By contrast, participants in the reverse-scaffolding condition had to enact and formulate 
interaction strategies that compensated for the tool’s shortcomings; only once they had 
articulated these compensatory strategies did the experimenter supplement those strategies into 
the tool as built-in features. Through this process, the participants came to understand their ideas 
with more clarity and, in so doing, achieve greater fidelity with the target concepts. Thus the 
reverse-scaffolding condition enabled participants to encounter a problem of practice, enact their 
solution, and ultimately articulate and confirm it. The process of first needing a particular tool 
and only then receiving it created increased opportunities to develop subjective transparency of 
the emergent mathematical system.  

Thus, learning to use a tool is a learning activity that does not necessitate that the 
participants encounter the problem of practice, nor articulate how the built-in features of an 
artifact enable their success. Furthermore, knowing how to operate a tool does not guarantee a 
seeing and understanding of the cultural–historical disciplinary knowledge embedded in the tool 
(see also Meira, 2002). On the other hand using a tool to learn implies that users build new 
knowledge by engineering improvements to imperfect tools, where these engineering micro-
solutions embody the design’s learning objective. 

 
5.7 Human Computer Interactions: Reflections on the User Interface, Usability, and 

Accessibility 

The Giant Steps for Algebra platform was designed for delivery via the internet. 
Therefore, it was optimized for use via a desktop or laptop computer. Some participants 
struggled when using the laptop’s built-in trackpad. Inorder to avoid undo frustration, I brought a 
Bluetooth mouse to all data collection sessions. All participants were familiar with using a 
mouse to select and drag onscreen modeling features. The platform layout proved to be intuitive 
to the users. Participants quickly located the story, identified that there were two components and 
quickly toggled between these two components. The participants also quickly identified the 
features in the modeling toolbox and associated them with the story, even prior to modeling.  
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The usability of the platform was somewhat problematic. The tolerance levels for 
selecting one of the toolbox features were not optimal. In particular, the cursor had to be entirely 
over the desired ‘button,’ or else the program responded as if there was no desired change in 
selection. What often happened was that a participant would intend to switch between Day 1 and 
Day 2, but they would inadvertently create a new Giant Step, for example. Because of these 
unintended, and somewhat glitchy, interface responses users had to spend time correcting. This 
tampered the ease of usability, making the process rather cumbersome at times. Notwithstanding, 
there was only one instance of a participant abandoning the modeling interface for another 
modeling modality – this participant quickly sketched her ideas for the researcher on a piece of 
paper while explaining her thinking.  

After interacting with the GS4A platform, many participants commented that it lacked 
certain game-like features. Some participants suggested a more robust and flashy 
acknowledgement for a correct response, some suggested the addition of sound effects, some 
suggested that the appearance be made to look more realistic. I categorize these comments under 
the participants’ appreciation of, and comfort level with, more traditional computer game’s 
appearance and embedded motivational components. This category of game mechanics was not 
an explicit focus of this first build of GS4A.  

Finally, when reflecting on the accessability of the technological tool, there were a few 
interface features that could be improved upon. Firstly, some students had a difficult time 
differentiating the hue of the green meter arc from the background. It would greatly improve the 
accessability if the color palatte were adjusted. Secondly, the current build of GS4A contains no 
formal web accessability features, in accordance with ADA, built in at this time.  
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CHAPTER 6: Conclusion 

This dissertation investigated the hypothetical phenomenon of discovery-based 
mathematics learning. The investigation took form as a conjecture-driven design-based research 
project centered on creating an empirical context for pursuing a set of emergent research 
problems. The learning environment was a technology embedded early-algebra modeling 
activity, Giant Steps for Algebra (GS4A), which was designed so as to foster student discovery 
of the qualitative principles governing the solution of unknown values. The  project addressed 
the following broader research questions: 

 
1. What are effective design heuristics for creating  discovery learning activities? How 

might such activities avail of technological functionalities? 
2. In particular, is it possible to create a microworld based on constructionist principles, 

wherein students learn mathematics content through building artifacts? Can a learning 
design balance constructionist principles with specific curricular goals? What particular 
activity architecture would achieve this balance? 

3. To the extent that the activity is effective, how exactly does building artifacts lead to 
content learning? 
 
For its theory, the GS4A activity architecture design drew heavily on on the theoretical 

construct of transparency (Meira, 1998, 2002) so as to envision a new approach to scaffolding. 
Transparency is a psychological construct related to objects and procedures inherent in cultural 
practice—it is the social agent’s understanding of how purposeful artifact-mediated actions, such 
as manipulating the GS4A interface features to solve a situated problem, accomplishes their 
objective. Transparency captures novices’ understanding of how features of artifacts they are 
using function in the accomplishment of situated goals. Transparency is the key hypothetical 
construct of this dissertation. The design of educational materials and activities as well as the 
design architecture for discovery-oriented scaffolding were all oriented on student development 
of subjective transparency for the algebra artifact. 

For its design, GS4A utilized the double-number-line visualization of algebraic 
propositions, that is, two equivalent expressions (Dickinson & Eade, 2004). GS4A students read 
a story about a giant who travels from Point A to Point B on two consecutive days, and then they 
use features of a microworld to model this story. Each leg of the journey unfolds with different 
combinations of giants steps (the variable) and meters, and students are to determine how many 
meters one giant step comprises. 

As they tinker with available microworld features so as to represent the story on the 
screen, students unwittingly achieve a set of pragmatic principles for coordinating the 
construction of the mathematical model. I named these principles Situated Intermediary 
Learning Objective (SILOs). The three GS4A SILOs were as follows,: 

 
• Consistent measures coordinates among units, so that all spatial diagrammatic 

instantiations of a variable are equal to each other (and the same goes for the known 
units) 

• Equivalent expressions coordinates across two expressions of an algebraic proposition 
• Shared frame of reference coordinates between two unit systems. 
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This study set out to investigate whether, and how, participants developed subjective 
transparency of the target content, namely the SILOs for foundational algebra. I measured the 
development of subjective transparency under conditions where I assign the participants a task 
and provide them with relevant resources but do not tell them how these resources should all 
come together to get the task done. I called this minimal-interventional approach reverse 
scaffolding. As opposed to the standard idea of scaffolding, which is a robust idea in the parlance 
of educational research and practice, the phrase “reverse scaffolding” implies a form of 
instruction in which the expert does not perform for the novice what the novice cannot yet do but 
only what the novice can already do. 

In technological environments, reverse-scaffolding is implemented by way of gradually 
introducing into the interface automated functionalities designed to  support students’ 
diagrammatic construction. By way of receiving new interaction tools only on demand, that is, 
only after a particular construction function has been discerned and possibly articulated, students 
develop subjective transparency of these new tools. That is, students understand the logic, 
mechanism, and purpose of these tools, not only their use; they know what precisely these tools 
accomplish, what problems of practice the tools solve, what pragmatic principles of assembly the 
tools actuate, how the tools enhance a grip on the world. Short of literally building the tools, 
students reinvent the tools. 

Note that the new tools are introduced not in a single event but over a sequence of events, 
whereby increased proficiency is iteratively rewarded with increased functionality. As such, the 
pedagogical approach of reverse-scaffolding is implemented technologically by way of an 
interaction activity architecture I call leveling transparency. The term “leveling” was selected 
specifically so as to conjure computer games, wherein new levels are attained, with all rights and 
privileges thereto pertaining.  

To evaluate whether the proposed reverse scaffolding pedagogical approach and leveling 
transparency activity architecture enable the development of subjective transparency, I 
conducted an empirical study that compared the implementation of an instructional activity under 
both reverse-scaffolding and control protocols. Statistical analyses of the two groups’ mean 
scores on post-intervention assessments demonstrated a positive main effect: Participants in the 
reverse-scaffolding condition significantly outperformed those in the control condition. 

Qualitative analyses of the intervention process implicated psychological mechanisms 
apparently causative of the main effect: Reverse-scaffolding students struggle more than baseline 
students to manage structural properties of the modeling system, and therefore these properties 
become evident to them—they develope more transparent structural understanding of the 
modeling procedure as well as greater facility in articulating the emerging conceptual system. In 
particular, I submit, the system of construction principles that students discover by tinkering with 
elements of a modeling environment (i.e. the SILOs) are tantamount to the core mathematical 
content of the instructional design. 

I thus conclude that students can reinvent mathematical knowledge through engaging in 
modeling-based activities, and reinvention positively correlates with the development of 
subjective transparency. To do so, participants should attend to the structure of their own 
constructions; they should apprehend this structure as reifying their tacit knowledge—knowledge 
that is brought forth as material form through the dialectics of shaping construction resources to 
tell a story; they should come to see latent structural features of their own spontaneous models of 
problem situations as properties of purposeful functions. Tasks, construction resources, 
facilitation, and activity flow can and should be designed to enable this apprehension of 
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structure. In particular, students can develop subjective transparency of mathematical concepts 
by creating, articulating, and generalizing the structural properties of the models they use to 
solve situated problems. The findings support previous arguments for learning through discovery 
(Martin & Schwartz, 2005; Noss & Hoyles, 1996; Radford, 2003; Schneider et al. 2015) and 
raise questions for skeptics (Alfieri et al. 2011; Kirschner et al. 2006). Moreover, I have offered 
and validated reverse-scaffolding, a pedagogical design architecture for discovery-based 
mathematics learning in technological environments (see also Holmes et al. 2014). 

 
6.1 Limitations 

The quantitative results reported herein are somewhat limited by the nature of the small 
sample size, only n=40. Given a larger sample size, it would be advantageous to test whether the 
significant learning gains experienced by the experimental group is consistent across all reported 
mathematics ability levels.  

The results must be considered only as a preliminary proof of concept within the context 
of a larger ongoing design-based research process. This was the first empirical study using the 
GS4A interface, and further refinement of the technology is still needed so as to increase 
usability. Additionally, whereas this experimental technology embeds some of the human tutor’s 
facilitation actions in the form of “intelligent” interactive software, the current build cannot as 
yet eliminate the human tutor—we still rely heavily on a human tutor to monitor that the 
participants indeed build subjective transparency as they progress through the activity levels. In 
the interest of eventually scaling up the project, that is, creating empirically evaluated and 
internationally accessible online learning tools for early algebra, it would be necessary to 
continue refining the software’s interactions as well as to extend students’ work into the 
symbolic semiotic register. 

Lastly, this study makes no direct claims regarding the impact that leveling transparency 
for the GS4A SILOs can have on proficiency in formal algebra. The scope of this study did not 
include a pre-post assessment of formal algebra skills. This should be considered for further 
studies of the leveling transparency theoretical approach. 

 
6.2 Future Design Trajectories 

The results from this initital build of the GS4A platform, as measured through student 
outcomes, were promising. I would like to take this opportunity to outline potential next steps for 
the GS4A project and the aspirations I have for GS4A 2.0. We have begun working on a tablet 
application. The hope is to explore the affordances of the touchscreen environment as a more 
direct and manipulatable medium. Additionally, future work on the GS4A web platform should 
address the specific shortcomings described earlier. 

Furthermore, the GS4A platform serves to demonstrate a new pedagogical approach to 
instructional design for technology-enabled activities. Future design work should explore how 
the reverse scaffolding activity architecture can be leveraged in other areas of STEM learning. 

 
6.3 Implications 

I have put forth a framework for building educational technology that facilitates students’ 
development of subjective transparency—the framework calls for a pedagogical approach that 
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embeds within the interactive technology an activity sequence designed to foster incremental 
development of transparency. Leveling transparency, as an activity-design principle for creating 
technology-based learning activities, could stand to significantly inform the design of 
pedagogical tools for discovery-based learning. 

This dissertation has corroborated the fundamental tenet of Constructionist pedagogical 
philosophy: What children learned about algebra was the sum total of the systemic relations they 
figured out through and about a model that they built. The learning environment—its structure, 
rationale, and resources—was supportive of the various discoveries and coordinations students 
achieved,—the “nuts and bolts” of building a workable model that both bears functional parity to 
the situation it represents and enables drawing inferences about latent properties of that situation. 
The logic of this educational design as well as its formative construct of a situated intermediate 
learning objective (SILO) may prove valuable in creating environments for other mathematical 
concepts as well as, more broadly, other STEM concepts. 

You know what you build. Granted, you can learn to use ready-made tools, but when you 
yourself build these tools your learning will be of a different quality altogether. 
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APPENDIX A: INTERVIEW PROTOCOL 

Digital Interview Protocol for GS4A - Leveling up 
Prior to beginning the Giant Steps for Algebra activity the researcher should ensure that 

the participant can use the computer mouse. The interviewer briefly introduces that participant to 
the context. 

 
Int:      “Egbert the Giant has stolen the elves’ treasure. Imagine that he has escaped their 

land and voyaged to a desert island. Imagine that this is the desert island (point to 
the computer screen). After getting off the boat, Egbert wants to hide the stolen 
treasure. You are an Elf. You are positioned on this island, and you are spying on 
the giant to find out what he does with the treasure. Here is the story that tells how 
the giant buried the treasure (point to the story box). These are the tools that can 
help you find the treasure (point to the toolbox). Do you have any questions?” 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 82 

 
Int = Interviewer 
Part = Participant 

LEVEL 1 – Freeform 
Task Why Anticipated 

Response 
Possible Follow up 

Problem 1: 
4x=3x+2 
 
Int: “What do you 
need to figure out?” 

 
 
Assure user can 
establish problem-
solving method 
 
Interviewer can show 
the participant how 
the interface works 
by demonstrating 
how to ‘draw’ a giant 
step and a meter, that 
the nodes can be 
moved, how the undo 
and delete work, that 
there is day 1 and day 
2.  

Part: “How big a 
giant step is.” 
 
Part: “How big a 
meter is.” 
 
Part: “Where the 
treasure is.” 

Int: “Do we know 
how big a giant step 
(or meter) is?” 
 
Int: “Do we need to 
know right now how 
big a giant step (or 
meter) is?” 
 
Int:” Can we just 
pretend it is this 
[demonstrate a 
random size] for now, 
or any size really?” 

Problem 2: 
3x-3=2x+2 
Int: “What do you 
need to figure out?” 

 
Assure user can 
recreate a problem-
solving method 
 

Part: “well the last 
time the giant step 
was _ # of meters” 
 
Part: “Is it the same 
giant?” 
 
Or the participant 
will replicate the 
same sequence of 
responses as above. 

Int: “I think that it is 
a different giant this 
time, so can we 
imagine that this 
giant walks 
differently?” 
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Assessment problems for leveling up - From level 1 (freeform) - level 2 (fixed meter) 

Task 
 

Why Anticipated 
Response 

Follow up 

- Problem 3: 
1x + 8 = 2x + 6 
 
Int: “How could 
drawing (building) this 
model be easier?” 

Participant 
demonstrates that 
s/he understands the 
representational 
intentionality of 
maintaining uniform 
constant units (in this 
case meters) despite 
perhaps representing 
them in a non-
uniform manner. 

Part: “The computer 
does it” 
 
Part: “Not so many 
meters” 
 
 

Int: “Does what 
exactly” 
“Creates something 
(meters) for you?” 

 
 
LEVEL 2 - Fixed Meter 

Task Why Anticipated 
Response 

Possible Follow up 

- Problem 1: 
http://art.visheshk.net/
gs/meter/1.html 
 
3x+2=4x-1  
 
precursor for stretchy. 
Uniformity of meter, and 
giant step (within days) 
 
 
 
Int: “So what do you 
need to know?” 

Participant constructs 
representations using a 
fixed meter. Can zoom 
in and out so that 
representation remains 
on the canvas 
 
 
Similar question 
structure as in level 1 
- freeform 

Part:”The meter won’t 
change.” 
 
 
Part:”I don’t have 
enough room now 
that the meter is 
fixed” 

Int:” the game has 
decided how big a 
meter should look” 
 
Int: “You can zoom 
in/out to make more 
space” 

- Problem 2:  
http://art.visheshk.net/
gs/meter/2.html 
 
3x – 3 = x + 1  
Uniformity of giant 
steps (between days)' 
 
Int: “So what do you 
need to know?” 
 

 
 
 
Similar question 
structure as in level 1 
- freeform 
 

  

 



 

 84 

Assessment problems for leveling up - from level 2 (fixed meter) - level 3 (stretchy) 

Task Why Anticipated 
Response 

Possible Follow up 

- Problem 3 
http://art.visheshk.n
et/gs/meter/3.html 
 
Day 1 a giant walks 2 
meter, then 2 giant 
steps, then 3 meters. 
Day 2 a giant walks 1 
giant step, then 4 
meters then 1 giant 
step then 1 meter. 
 
 
 

Because they have to 
retain the uniformity 
of giant steps as well 
as the shared start 
and end point. 

Part: “ It’s hard 
changing all of the 
giant steps to match.” 
 
 
Part: “How do I know 
that all the giant 
steps are exactly the 
same size?” 

Int: “It is important to 
use the meter, which 
a size that you know 
and that is given to 
you, to see if you can 
make sure all of the 
giant steps are 
exactly the same 
size.” 

 
LEVEL 3  - Stretchy 

Task Why Anticipated 
Response 

Possible Follow up 

- Problem 1 
http://art.visheshk.net/
gs/new/1.html 
 
5 – 3x = 2x 
Giant steps backwards 
 
Int: “What do you need 
to figure out?” 
Int: “So what do you 
notice?” 

Participant 
experiments with 
negative integers 

Part: “I need to figure 
out how to make the 
ends meet (how to 
over lap Day 1 and 
Day 2 end point) 
 
Part: “ I notice that all 
of the giant steps 
change (move) 
together” 

Int: “ What can you 
move so that the 
ends meet?” 
 
 
 
Int: “ Can this help 
you figure out where 
the treasure is 
buried?” 

- Problem 2: 
http://art.visheshk.net/
gs/new/2.html 
 
2x – 4 = x – 3 
Behind the starting 
point 

Participant increases 
the range that they 
are manipulating the 
giant steps 

Part: “But it seems to 
be behind the start?” 
 
Part: “Can a giant 
move in any 
direction?” 

Int: “ A giant can 
move in any direct.” 

- Problem 3: 
http://art.visheshk.net/
gs/new/3.html 
 
3 + 2x + 4 = 2 + 3x 
 

Participant 
rearranges the order 
of the story 
components either 
manually or mentally 
to create accurate 

Part: “But the giant 
steps/meters don’t 
match up.” 
 
 
Part: “Is it possible to 

Int: “What can you do 
so that the drawings 
match up?” 
 
Int: “It is possible to 
switch the order of 
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Constants and giant 
steps in different orders 
(requires the 
functionality of removal 
of intermediate nodes 
or user rearranges) 3 + 
2x + 4 = 2 + 3x 
(combining like terms, 
is introduced/demanded 
here) 

matches. Maintaining 
internal consistency 
but simplifying the 
equation. 

switch the order that I 
draw thing in?” 

the drawing without 
changing anything.” 

 
 


