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The paper introduces the ·•eye-crick". an optical illusion, and argues for its viability 
o.s a didactlc means 10 mediate between young students' na1uralls1lc perceptual judg­
ments and mathematical descriptions of proponional equivalence classes (e.g., 2:3=4: 
6=6:9=8: 12= ... CIC.). • 

Cognitive-psychology (Suzuki & Cavanagh, 1998), biological (Thinus-Blanc, 
1988), and developmental (Piaget & lnhelder, 1946) studies all suggest a human 
capacity to pcrfonn perceptual judgments of proportional equivalence, e.g., between 
two geometrically similar rectangles. Such perfonnance appears co rely on what 
Cobb and Steffe ( 1998, p. 55; see also Gelman, I 993) call "concepts in action, enoc• 
tive concepts, rather than [on] abstract concepts embodying a s1rucrural relationship 
betwecn ... quantities", as evidenced in students' notoriously low achievement in 
n11meric.al proportion problems (e.g., Kaput & West, 1994). By embracing students' 
domain-appropriate 'enactive' knowledge, we hope to create ''instruction (that) is in 
hannony with (learners'] schemes'' (Cobb & Steffe, 1998, p. 48), and may thus pre­
empt "discontinuities between the child's procedures and the child's concepts" (p. 58; 
see also Vygotsky, 1978; and Freudenthal, 1981, on mathematization). Specifically in 
the domain of ratio and proportion, the "eye-Irick", a perceptual illusion (see below), 
may afford students an opportunity for "logico-mathematjcal structuration chat .. .. goes 
beyond perception" (Piaget & lnheldcr, 1969. p. 49, my italics). 
The motivation of this work is our belief that ratio and proportion is an advantageous 

conceptual entry 10 rational numbers (e.g., see Confrey, I 998) because ratios do not 
require embedded numbers, as fractions do. Fractions are parts-to-I-whole, and thus 
present the perceptual-logical challenge of 'inclusion' (e.g., Singer & Resnick, 1992). 
The simpler visual physical instantiations of whole-to-whole ratios in geometrically 
similar shapes suggest a simpler approach. This work was done as part of our larger 
project to utilize the multiplication table as .a source for teaching/learning rate, ratio, 
and proportion as coming from iterated addition (see also Abrahamson, 2002; Cobb & 
Steffe, 1998; see Abrahamson & Cigan, 2002, for an outline of our curricular unit). 

Method 

The eye-trick involves two proportionate pictures (e.g., of heights 2cm&3cm and 
4cm&6cm, Figure la). Children are asked 10 shut one eye to eliminate their stereo-
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Card A Card B 

Figure I a. Cards A and D as seen laid flat 
on the table. 
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Card A Card B 

Fig11re lb. Cards A and Bas seen 
1hrough the eye-trick illusion. 

scopic _v1s10n. Holding bolh pictures, they then move the larger piclure away from the 
smaller picture (farther from their eye) unlil they find a point where the two pictures 
produce images of the same size (Figure I b). This propor1ion is then examined numer­
ically by anending 10 the embedded ruler in each image (2&3 units in both pictures), 
and through measurement, using a stretchable rubber ruler. The unstretched units of 
this ruler correspond 10 2 and 3 units of height in Card A and to 4 and 6 units of height 
in Card B, but the strc1ched units of the ruler correspond 10 2 & 3 units in Card B. The 
entire set of materials included a total of five cards per ratio set (e.g., 2:3, 4:6, 6:9. 8: 
12, JO: 15) as well as additional sets of cards (a 3:4 set and a 3:5 set) bearing different 
images of object pairs. 

We have employed the eye-trick tasks both in whole-class design studies (Abraha­
mson & Fuson, in preparation), and in clinical interviews, of which Aliya's (8.5-year­
old) interview was typical. I worked with and video-taped Aliya over three I-hour 
periods spanning 15 days. 

Resutl, 

Aliya (a) saw that two cards of different size appeared "the same": (b) measured 
these cards wi1h the stretchable ruler and tabulated these data (2&3, 4&6, in Figure 
2a); (c) claimed these data were mathematically nonsensical since 3-2= I but 6-4=2 
(lhe differences are different); (d) sough1 an alternative numerical paucm to explain 
what she saw, wondering aloud whether the differences of I and 2 units, respectively, 
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could possibly signify a trend of I, 2, 3. etc., which would predict a difference of 3 in 
an additional card: (e) explored and verified her hypothesis by using a card in which 
the relevant dimensions were 6cm:9cm (6 & 9, Figure 2a): (f) compared these data 10 

a case of head-stan equal-rate growth (Figure 2b, Bob and Joe were born exactly one 
year apart); (g) discussed the viability of each table as a mathematical descriptor of 
some real-world class of situations; (h) practiced using her hands 10 simulate and dif­
ferentiate equal-rate and different-rate growths: starting from holding her hands 2 and 
3 "units" above the table, respectively, she raised her hands whilst either maintaining 
a fixed difference between them or by gradually increasing the difference; (i) re-inter­
preted the proportion table as modeling ''unit-splilling", e.g .. 3 "becomes" 6 because 
each I-unit became 2 smaller units but the visible total remained the same size (Fig. 
3, compare to 2* 3 as 3+3 where the total visibly doubles in size); (j) came to accept 
proportional equivalence as the numerical phenomenon corresponding 10 the stretch/ 
shrink or "change unit" classes of real-world situations. 

Ratio Change 

Danny Snowman 

2 3 

4 6 

6 9 

Figun 2a. Tabulated 
measurements. 

Conclusions 

The eye-trick provides a powerful sensory 
support for understanding proportional equiva­
lence. This visual support was successful in over­
riding !he well-documented "additive frame", by 
which 2:3 cannot equal 4:6 because 3 is I more 
than 2 bul 6 is 2 more lhan 4. IL enabled Aliya 10 

build an additive-mulliplica1ive frame for propor­
tion situations, initially as additive increasing-dif­
ference situations (within the ratio-table rows), 
and then as a multiplicative interpretation of unit 
splitting within both the eye-trick pictures and Lhe 
ratio table (between its rows). 

1661 .. 

Head-Stan 
Equal Rate 

Bob Joe 

2 3 

4 5 

6 7 

Figure 2b. Sibling ages. 

Figure 3. Explaining pro­
portional equivalence as 
coming from unit-spliuing 
interpreted multiplicatively. 
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