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Like Plato’s allegorical cave-dwellers, students of three-dimensional geometry seldom get to handle 

the real thing, working instead with two-dimensional silhouettes. Such historical sensory deprivation 

may partially explain students’ generally poor conceptual understanding of this core content and 

alienation from the field. Operating from a perspective of embodied learning, our design-based 

research study invited middle-school students to collaboratively construct and investigate 

voluminous objects. We present qualitative analyses of empirical results from implementing two 

experimental geometry activities. For both cases, we characterize students’ critical insights as shifts 

in perceptuomotor attention leading to refinement of geometric argumentation.  We implicate 

students’ realization of an available 3D medium affordances catalyzing these shifts. The findings 

contribute to a socio-material elaboration of embodied learning for school geometry. 
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Introduction 

Historically, the mathematical discipline of geometry originated from mundane practice—situated, 

embodied know-how serving personal, social, and professional contexts, such as carpentry, 

agriculture, and navigation. However, while humans live and act in 3D space and engage voluminous 

objects as part of this naturalistic spatial comportment, geometry scholarship—the reification and 

scrutiny of these objects’ structural properties—has historically depended on 2D material media and 

their consequent “flat” perspectives (Alsina, 2010). This dependence has а price. For example, a 

recent study by Fujita et al. (2020) documents elementary- and middle-school students’ poor 

performance on spatial geometry problems, especially those requiring multiple reasoning steps. 

Scholars from different disciplines have claimed that if students began studying geometry with their 

embodied sensibilities, we could preempt their poor engagement and low performance in the 

discipline (Freudenthal 1971; Thompson, 2013). Pedagogical advocacy to work with “the thing itself” 

harks back to Enlightenment (Rousseau, 1755/1979; Froebel, 1885/2005) and modernity (Montessori, 

1949/1967), bolstered by Gaspard Monge and Felix Klein’s approach to the development of intuition 

about complex structures through the construction of concrete models (Mueller, 2001). Still, after 

over 60 years of empirical research on the use of manipulatives in mathematical classrooms, their 

cognitive effects and optimal utilization have yet to be established (Bartolini Bussi et al., 2010).  

We argue that realizing a material transformation in (spatial) geometry instruction, from 2D to 3D, 

demands a paradigmatic epistemological shift from idealistic to realistic views on geometry; from a 

representationalism model that separates perception, cognition, and action to an embodied model. 

Cognitive argument: from a perception-cognition-action model to embodied cognition 

Per Plato, she who seeks mathematical knowledge should strive to obtain mental representations as 
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close as possible to the ideal (non-physical) forms. Millennia later, Platonic metaphysics persevere 

through cognitive-science theoretical models that box the mind inside the skull as an amodal ethereal 

switchboard between its earthly perception input and action output (Hurley, 2010). Over the recent 

decades, however, cumulative data from various fields (neurobiology, robotics, kinesiology) is 

casting doubt on this classical model (e.g., Willems & Francken, 2012).    

The embodied turn in cognitive science rejects the hierarchical mind–body separation and stresses 

that perception and action are formatively constitutive of our thinking—cognition is modal and 

situated activity (e.g., Chemero, 2013). The mind’s function is not to represent the environment 

precisely but to engage with it dynamically vis-à-vis socio–biological task demands and emergent 

contextual contingencies. The environment offers opportunities for potential action—affordances 

(Gibson, 1986)—that the agent interactively discerns and incorporates. When we engage the world 

with fellow humans, we coordinate with them perceptual orientations in relation to shared situations, 

from early development (Tomasello, 2019) and through to professional practice (Goodwin, 2018). 

Imported to mathematics instruction, tenets from the embodied paradigm of the cognitive sciences 

suggest that learning new concepts begins with discovering new ways to act in the environment, using 

new instruments to perform tasks on discovered affordances (Abrahamson & Bakker, 2016). Working 

with the things themselves, students develop a capacity to act efficiently, describe the world 

mathematically to coordinate collaborative actions, iteratively encounter more complex problems, 

and ultimately modify the environments to solve emergent problems (Abrahamson et al., 2020). 

Spatial geometry challenges and possible theoretical and practical solutions 

Roth and collaborators demonstrated that geometry knowledge may emerge as enacted exploration 

of concrete instructional resources. Their examination of primary-school students’ classification of 

geometric objects fuses material phenomenology and phenomenological sociology to view geometry 

as cultural–historical motivated sensuous labor (e.g. Bautista & Roth, 2012). Yet, whereas overtly 

embodied routines, such as gesturing, manipulating objects, and applying mechanical construction 

tools, are considered essential for young students’ geometric reasoning and problem solving (Kaur & 

Sinclair, 2014), these resources almost disappear from older schoolchildren’s instructional activities. 

Perhaps most acutely, mainstream spatial geometry education skips “the real thing,” immediately 

requiring of students to visualize 3D objects given their 2D representations (Widder et al., 2019). 

Consequently, students struggle “to overcome the perceptual appearance (or ‘look’) of the given 

diagram” (Fujita et al., 2020, p. 235). For instance, for one of their survey items (see Figure 1, on the 

left), just 17 % of the 5th-grade students, 34% of 7th-grade students, and 52% of 9th-grade students 

marked the correct answer (percentages rounded). In light of their results, Fujita et al. (2020) call to 

revise primary and secondary school curriculum to provide students with more opportunities to 

develop both spatial skills and geometric knowledge for productive argumentation. However, the 

researchers do not indicate what types of tasks could possibly serve as context for realizing this call. 

Investigating a 3D DGE (dynamic graphic environment), Mithalal and Balacheff (2019) explored 

conditions in which construction tasks stimulate students’ transition from working with drawings and 

iconic visualizations to perceiving geometric properties of figures and non-iconic visual displays. 



 

 

They claim that this transition depends on students’ ability to perform certain figural operations 

(dimensional and instrumental deconstruction) in tasks designed to hone this ability. 

 

 

 

In a cube, can you identify the shape ABC? 

Choose your answer from (a) – (e). 

(a) Right-angled triangle 

(b) Isosceles triangle. 

(c) Right-angled isosceles triangle 

(d) Equilateral triangle 

(e) Scalene triangle 

ABCDA’B’C’D’ is a cube. Answer the true/ false questions and 

explain your reasoning.  

1. CB’D’ is a right-angled triangle. The right angle is ___? 

2. B’D’ is the shortest side of the triangle CB’D’. 

3. Triangle CB’D’ has an obtuse angle.  

4. In triangle CB’D’, all angles are equal.  

Figure 1: Tasks involving 2D representations of 3D geometrical shapes 

With Fujita et al. (2020) and Mithalal and Balacheff (2019), we acknowledge the key cognitive role 

of sensory perception in understanding spatial geometrical forms. Yet, we conceptualize sensory 

perception as necessarily serving and emerging from goal-oriented action. We thus seek to 

investigate how students ground geometry concepts in action-oriented perception. Our study 

accordingly evaluates a set of enactive tasks designed for high-school students to develop geometrical 

perceptions through multimodal action-based interactions with concrete material. 

Constructing tangible models as embodied design for spatial geometry learning 

Supported by the embodied perspective, we are looking to capture and theorize conceptually 

significant shifts in students’ perceptuomotor attention towards voluminous geometrical solids. The 

two vignettes, both from video-recorded data gathered in Jerusalem, Israel1, illustrate how each 

activity’s unique sensorimotor affordances enabled students to engage in conceptually generative 

collaborative enactment and argumentation. The first vignette (V1) presents a task (Figure 1, right) 

designed to stimulate perceptual coordination of 2D diagrams and their 3D counterparts: students use 

a “3D pen” to construct a voluminous cube from its “flat” image, then they manipulate the model to 

investigate its properties per the problem instructions. The vignette exemplifies a “first step out of 

Plato’s cave,” where students tentatively realize what they can, may, and should do with a 3D model. 

In the second vignette (V2), students assemble a very large multi-unit geometrical form and then 

identify the “hidden” form that emerged in between the units. This vignette exemplifies students’ 

zealous unshackling of any remaining “geometry-is-flat” predilections. 

                                                 

1 Qualitative analysis of additional cases is currently underway to evaluate for generalizability of these case studies   



 

 

V1. Stepping out of the cave: Learning a 3D model’s affordances for spatial problem solving 

The teaching experiment presented in this vignette is a part of a wider educational research project 

evaluating students’ experiences with 3D pen sketching while solving spatial geometry problems (for 

details, see Rosenski & Palatnik, 2021). Three 10th grade students (T, G, & M) faced the task shown 

in Figure 1 (right) for approximately 20 minutes. Male student G drew the triangle inside the cube 

with a 3D pen. Next, over approximately 8 minutes, the students discussed the problem but made no 

significant progress. They were inclined to believe that CB’D’ is a right-angled triangle.  

T: No, but you know that this is a cube, and this (cube face) is a square, and then, this 
is 90 degrees, then this is 90 degrees, and then it (diagonal) bisects the angle, so it 
is 45(degrees). 

G: The question is, if we rotate (two faces, where the edge is an axis) [gestures 
“rotation” with two palms as faces], would it be the same angle? Could it be? 

M: To them, it (the angle) in the picture also looks like that (90 degrees). 
T: In the picture, it is just from a different angle, if you turn it like this [adjusts the 

model], you can see that this [points] is the right angle if this is stretched [pulls up 
the slightly sagging plastic diagonal of the top face of the cube.] 

 

 

Figure 2: Investigating 2D representations of 3D geometrical shapes  

During these eight minutes, students left the model standing between them on G’s writing surface 

(see Figure 2). Remarkably, the students made inferences and conjectures about the task without 

taking the model in hand, only lightly touching it and making minor adjustments. Most of these 

adjustments reoriented the 3D model vis-à-vis the given 2D diagram. 

In this phase of problem solving, the students were reluctant to make inferences based on the 

appearance of the 3D model. They approached the 3D model to correlate it with a cultural form that 

they are used to—a 2D diagram. In particular, the students sought to “flatten” the 3D model such that 

it would be seen as identical to the 2D diagram, where CB’D’ presents an apparent right angle (see 

Figure 2-left, where T twists her body). However, a retinal image of a 3D object is not similar to a 

2D projection. As Gibson (1986) has argued, we notice optical invariances of the object under the 

movement of the source of light, movement of the observer, movement of an observer’s head, and 

manipulations and local transformations of the object itself. Naturalistic interaction could possibly 

untether the students from “paper math.” Soon after, indeed, the students utilized these affordances 

of their 3D model, discerned it invariant features by handling it, and made correct inferences. 

Several factors prepared the A-ha moment. For instance, G was unsatisfied with the claim that CB’D’ 

is a right-angled triangle. He argued: “If these two angles look like the same shape, if they are both 



 

 

right angles and a triangle has a total of 180 degrees, then the triangle cannot exist”; “This is 

impossible. If you rotate it each way to make it (one of the angles) look like a right angle, then you 

can rotate it in a different way (to make other angle look like a right angle)”. Yet his teammates, still 

“deep in the cave,” had still to be convinced.  

At the 14th minute of tackling the task, we witness a shift in students’ interaction with a model.  T 

took the model in hand (Figure 2-right) for the first time, rotated it for five seconds, and 20 seconds 

later said, “Now I get it.” In the next minute, T tried to formulate her vision, accompanying her 

explanation with more than 5 complex model rotations (i.e., more than 2 axes involved). The core of 

her argument was in line with what G had previously argued: from different angles, the triangle 

appears isosceles, and yet its angle “can’t be 90 for all of them.” During this minute, G’s attention 

was on the rotating model, enabling him to see it under these transformations. In contrast, M focused 

only on the 2D diagram and tried several times to draw her peers’ attention to it: “Look at the picture!” 

It took another minute for G to formulate an answer and a valid argument. 

T: So you think all the angles are 60 degrees? Is it an equilateral triangle? 
G: Yeah, look, all the sides are of the same length [traces with finger three sides in 

succession] if you look at it. Is that true? 
T: Mmmm…I don’t know. 
G: Look [adjusts the model], all the sides (of the triangle) are exactly a diagonal [traces 

a diagonal of the upper face], the diagonal of a square. All the squares are the same. 
And that means, if all of the sides are equal [points on a different face], all of the 
angles are equal, and they’re all 60 degrees. 

T: Ok... [types into the response form] We think that all sides are equal; therefore, the 
angles are also equal... equal to 60. It’s an equilateral triangle. 

To summarize, the task was difficult for the students, even with a 3D pen and a model. In line with 

Fujita et al. (2020), the task demanded that students harmonize their spatial reasoning skills with 

domain-specific knowledge of planar geometry (properties of squares and triangles). It took students 

time to utilize an available 3D medium and realize its affordances (a spectrum of perspectives on the 

equilateral triangle for the team members). M’s decision to stick to a 2D drawing may explain her 

low contribution to the final effort. In contrast, when T physically rotated the model, her actions 

apparently spurred and supported her spatial reasoning and were visible to G. He, in turn, observed 

these physical rotations, which allowed him to refine his previous arguments based on mental 

rotations and apply the corresponding geometric knowledge to the new 3D situation. 

V2. Further steps: Constructing enactive argumentation—gesture, action, medium  

In the second teaching experiment, part of “Geometry In… and Out” (Benally et al., 2021), four 7th 

grade students constructed voluminous solids (Figure 3) then worked on the following questions: 

“Comparing the volumes of the large and small tetrahedra that you built, how many times the volume 

of the large tetrahedron is greater? Explain your answer. Several small tetrahedra compose the large 

tetrahedron. Can you describe a three-dimensional shape between them? Can you construct it?” 

Once the group had constructed the first small pyramid, Yali placed it on his head (Figure 4a). Nami, 

using Yali as a stand, gestured on him that this polyhedron is called “arba-on” (“arba” is four in 

Hebrew). The palms of her hands present the polyhedron’s faces. Then, removing the model off Yali’s 

head, Nami gestured similarly, though with her forearms, to present the same four faces (Figure 4b). 



 

 

It took the students approximately 11 minutes of collaborative work to construct a large model and 

begin answering the items. Their plan for estimating the large tetrahedron’s volume was to 

decompose it into its component parts. They easily recognized four small tetrahedra: “three at the 

base, and one at the top.” However, the students were not sure about the shape of a three-dimensional 

hollow between the tetrahedra (the octahedron outlined in red, for your convenience, in Figure 4c).  

1)    Your team has to construct a three-dimensional model of 

the following geometrical solid using a construction kit. 

The solid has the following properties: 

●   All the faces are congruent equilateral triangles. 

●   The same number of edges converge at each vertex. 

2)   The polyhedron you’ve constructed is called a 

tetrahedron. Construct a similar polyhedron whose edges 

are 2 times larger than the original one. You can use the 

image below for construction. 

 

 

 

 

Figure 3: The tetrahedron construction task and materials. 

Figure 4: Different affordances of the available media as manifested in students’ actions 

Tami, Nami, and Gali suggested that the hollow is also shaped as a tetrahedron. Yali disagreed and 

offered to count the faces of the “empty space.” He rotated the large model, hoping to render it more 

familiar, yet that action proved unhelpful. Tami remonstrated, “You just can’t see this (tetrahedron).” 

To support her claim, she grabbed two sheets of paper lying on the desk and applied them successively 

as the polyhedron’s faces, expecting these to total at four. Immediately, Yali appropriated Tami’s 

strategy, just to disprove her. Summoning more paper sheets and distributing them over more group 

members, he marshaled an “octopus of hands” to simultaneously cover all the polyhedron’s faces. 

The introduction of these auxiliary objects helped students to solidify the shape (Figure 4d), count 

the faces, and eventually write the following definition: “The polyhedron between four triangular 

(pyramids) has eight identical faces. Each face is an equilateral triangle.”  

This vignette illustrated the emergence of students’ enactive argumentation through collaborative 

semiotic evolution of gestures into concrete media. Students’ hands, semi-constructed models, and 

even repurposed found objects became instrumental in shaping a void—rendering a contested obscure 

object into an articulated, unequivocal, and publicly inspectable form. The hidden octahedron was 

born as a “prospective indexical” (Goodwin, 2018) then came forth through pointing, formative 

 

a 

 

b 

 

c 

 

d 



 

 

gestures, and construction media. Thus, the hollow solid inhabiting the larger structure was 

substantiated, reified. Eventually, once the form was delegated from imagination to media, the 

students could allocate cognitive resources to enumerate its facets and name the new geometric object. 

Discussion and Conclusion 

This article aimed to present theoretical foundations and empirical arguments for a set of embodied 

spatial-geometry curricular resources for middle school. We submitted that historical dependence of 

geometry education on 2D media is implicitly rooted in an idealistic Platonic tradition and the 

representational cognitivist model. We conjectured that tasks in which students construct 3D objects 

are more than “working with manipulatives”—they let students use their natural capacities of 

multimodal perception and collaborative action. We supported our argument through qualitative 

analysis of two vignettes exemplifying embodied design for spatial geometry learning. 

We demonstrated how a group of middle-school students grounded geometric concepts of solids, 

their cross-sections, faces, and edges in goal-oriented, situated activity of constructing concrete 3D 

models. Our first vignette demonstrated that coordination of traditional and novel medium is not easy 

for students. They tentatively experiment with their new degrees of modal freedom—looking at 

objects, pointing at them, touching them, lifting and rotating them. New affordances catalyze shifts 

of students’ attention to relevant features supporting their geometric reasoning.  

Mithalal and Balacheff (2019) considered the possibility of a continuous evolution from iconic to 

non-iconic visualization, where the figural operation of instrumental deconstruction would play a 

cohesive role. Our second vignette provides an empirical basis for this assumption. The transition 

from iconic visualization to non-iconic visualization was carried out by introducing tangible auxiliary 

elements (paper sheets in the form of polyhedron faces) into the 3D model. Thus, the students 

performed a naive instrumental deconstruction of shape, a mereological deconstruction of a 3-

dimensional shape into four tetrahedrons and an unfamiliar shape, and finally a dimensional 

deconstruction of a 3-dimensional shape, which focused their attention on the 2-dimensional faces of 

the octahedron (see Palatnik & Sigler, 2021, for a theoretical discussion on the introduction of an 

auxiliary element as a shift in attention). This argumentation by action was later transformed into a 

normative formulation of properties—the formal definition of a geometric solid. 

Constructing and manipulating tangible models creates opportunities for students to harmonize 

spatial skills and rigorous geometric argumentation as well as bridge iconic and non-iconic 

visualization. Yet, it is challenging to step out of Plato’s cave after a lifetime of unwitting 

incarceration. Middle school geometry should organize students’ engagement with 3D objects as one 

would any artifact—with untampered senses; with gross and fine motor actions; with all the tacit, 

evolutionarily endowed naturalistic sensibilities for orienting in the environment. Once students 

realize how to work with three-dimensional objects in mathematical activities, they can tap their 

know-how to build valid arguments grounded in enactive experience. 
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