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Different approaches to embodied learning—conceptual learning of curricular 

content grounded in a new capacity for enacting forms of purposeful physical 

movement in interaction with the environment—have become increasingly central 

to mathematics-education research. This research forum provides participants 

with an up-to-date overview of diverse and complementary theoretical perspectives 

on embodied learning, principles derived from these perspectives governing the 

design of environments for learning various mathematical content, and 

demonstrations thereof. We speculate on promising directions for future embodied 

design research. 

INTRODUCTION 

Embodied mathematics learning is grounded in the human capacity to interact with 

the physical and social environment through purposeful movements, use of the 

senses, and creation and utilization of artifacts. As a field-wide paradigm, 

embodied learning stems from the embodied turn in the cognitive sciences, which 

maintains that perception and action are formatively constitutive of our thinking—

cognition is inherently modal and situated activity (e.g., Chemero, 2013) that draws 

on the body’s physical interaction with the world (Gibson, 1986). As such, 

cognition, including learning and knowing, emerges from activity of the perceptual 

and motor systems and, thus, in turn, is shaped by the body’s physical properties 

and movement capacity (Glenberg, 2010). These ideas provided a powerful 

incentive for updating curricula design and resources for learning and teaching 

(Shapiro & Stolz, 2019). 

There are several pedagogical precursors of the embodied approach to learning. 

Among them are Friedrich Fröbel’s ideas on the importance of the child’s activity 

in learning (Brosterman, 1997), Dewey’s (1938) conceptualization of ‘learning by 

doing’ and reflective inquiry, and Maria Montessori’s (1949) work based on the 

observation that “Watching [the child], one sees that he develops his mind by using 

his movements….[One cannot learn by] sitting down, moving nothing” (pp. 203–

204). Similarly inspired early researchers of mathematics education advocated an 

educational approach capitalizing on the importance of physical space for learning: 

“We live in space, …. move in space, …. analyze space, to be better adapted” 

(Freudenthal, 1971, p. 418). This Research Forum (RF) also heeds Schoenfeld’s 

(2016) statement that the variety of approaches to embodied learning (see 

Abrahamson et al., 2020) is becoming increasingly important for mathematics 
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education. The RF provides an up-to-date overview of diverse yet by-and-large 

complementary theoretical perspectives on embodied learning, including their 

philosophical roots and influences from cognitive science. The exposition 

continues with design principles derived from the theory, then examples of 

environments designed by the contributors to this RF for learning various 

mathematical content. We conclude with perspectives and future directions for 

research on embodied learning in mathematics education.  

THEORY OF EMBODIED LEARNING OF MATHEMATICS 

A tree of embodied perspectives 

There is a great variety of theoretical approaches in mathematics education 

research that call for attention to bodily processes that enable mathematical 

thinking and learning, including, but not limited to motor performance, gestures, 

and eye movements as well as multimodal sensory experiences. The scope of these 

approaches is difficult to discern, as they are rooted in diverse ideas from 

philosophy, biology, physics, and branches of cognitive science and psychology, 

including cognitive linguistics, developmental psychology, the science of 

movement, and many other disciplines (see Figure 1 for a rough sketch of the tree 

of ideas). 

Traditionally, researchers distinguish between conservative and radical approaches 

based on their stance towards mental representations and the separation between 

mind and body (Hutto & Abrahamson, 2022). For example, grounded cognition 

(Barsalou, 1999, 2021) assumes that a variety of experiences gained through eyes, 

ears, and other body parts is accumulated in mental representations called 

perceptual symbol systems. Grounding mathematical concepts on those 

experiences allows researchers to theorize the role of gestures and other forms of 

embodiment (Nathan & Alibali, 2021; Walkington et al., 2022). Another relatively 

“conservative” approach comes from cognitive linguistics: Lakoff and Johnson 

(1980) introduced the cognitive semantics theory of conceptual metaphors to 

explain how language propagates embodied experience into abstract concepts. 

Metaphorical mapping of mathematical concepts on bodily experiences, such as 

treating sets as containers, was extensively explored by Lakoff and Núñez (2000) 

and spread through math-ed scholarship (e.g., Sfard, 1994). “Mapping” between 

different contexts, e.g., written numbers, a number line, and physical objects, 

would form conceptual integration (Edwards, 2009). Once such mapping and 

grounding are assumed, educators might wish to induce mathematical 

understanding by inviting students to gesture out particular shapes hypothetically 

associated with mathematical content (e.g., Walkington et al., 2022). 

Radical approaches abandon the idea of conceptual structures as ecologically 

independent epistemological entities preserved by the cognitive system as 

representations or schemes, instead embedding concepts into embodied 

experiences (Varela et al., 1991). A key root of those approaches is complex 

dynamic systems and coordination dynamics ideas (Bernstein, 1967; Kelso & 
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Schöner, 1988), which propose the non-linear and self-organizing nature of 

cognitive processes. Another intellectual grounding of embodied learning is 

ecological psychology (Gibson, 1986), which states that an individual’s perception 

constantly evolves by actively detecting in the environment aspects relevant to 

interaction, i.e., affordances. While the interrelation between these approaches is 

hotly debated in cognitive science (Di Paolo et al., 2021), their combination is 

productive for theorizing mathematics learning (Abrahamson & Sánchez-García, 

2016) and designing for learning within the embodied design framework 

(Abrahamson, 2014). 

Figure 1: A tree of embodied perspectives. 

https://embodieddesign.sites.uu.nl/tree/ 
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Diving into the mathematics education research field, we may notice that some 

embodiment-oriented approaches bypass cognitive science; thus, the radical versus 

conservative landscape does not apply to their classification. For example, the neo-

materialist approach (de Freitas & Sinclair, 2013) is inspired by Deleuze’s ideas 

of a concept as an assemblage, where material artifacts, nature, and bodies get 

intertwined in their actualization. This approach calls for attention to materiality 

and how it invites students to interact. Grounded in Hegel’s and Vygotsky’s ideas, 

the theory of objectification (Radford, 2021) considers cognition to be sensuous 

and explores how students become aware of mathematics as they encounter 

material culture in practical collaborative activity with teachers and peers. 

When theoretical tenets rest on disparate ontological and epistemological 

assumptions and share only family resemblance, still they may nevertheless 

undergird common pragmatic agendas. For example, researchers who 

conceptualize a cognitive mapping between sensorimotor experiences and 

mathematical ideas (Walkington et al., 2022) may embrace principles of ecological 

dynamics (Abrahamson & Sánchez-García, 2016). Another combination comes 

from joining enactivist ideas with metaphorical mapping between mathematical 

concepts and other interaction contexts (Díaz-Rojas et al., 2021). Yet another 

approach combines coordination dynamics and cultural–historical ideas into the 

notion of a functional dynamic system (Shvarts & Abrahamson, in press). In this 

monist approach, mathematical notions are reconsidered as direct extensions of the 

bodies via mathematical artifacts that come forth in the intercorporeal sensorimotor 

dynamics of teachers’ and students’ task-oriented embodied activity. 

In the following sub-section, we present the key ideas essential for understanding 

mathematical learning as an embodied process: moving in a new way, perceiving 

in a new way, and naming in a new way. We do not offer a coherent theory but 

point to the ideas of many authors who, using different terms, refer to these aspects 

of learning. We strive to bridge these perspectives around the same phenomena. 

Moving in a new way 

Movement is the deepest aspect of human nature: 

… we are essentially and fundamentally animate beings. In more specifically dynamic 

terms, we are animate forms who are alive to and in the world, and who, in being alive 

to and in the world, make sense of it. We do so most fundamentally through 

movement, unfolding a kinetic aliveness that is in play throughout the course of our 

everyday lives from the time we are born to the time we die. (Sheets-Johnstone, 2011, 

p. 452) 

When learning and developing, human bodies come to move in new ways: sucking, 

walking, writing, drawing. To grasp how understanding is grounded in movement, 

we must acknowledge that body movement already requires understanding the 

world. An alive movement is not a blind repetition of a pre-programmed sequence 

of motions. Instead, it is an emergent phenomenon that arises in a constant attempt 

to solve motor problems that the world places in front of an organism (Bernstein, 
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1967) as it strives for relative equilibrium (Merleau-Ponty, 2002) in a constantly 

transforming environment. Many levels of regulation act collaboratively in 

accomplishing a movement: Our body responds to gravity, our posture is built in 

relation to all body parts, and our hands encompass the spatial relations of the 

objects (Bernstein, 1967). All these levels find their way through constant probing 

and adjusting of sensory-motor processes by anticipating and receiving feedback 

from the environment. An exact repetition is never possible in this complexity. Yet, 

invariants are enabled by the synergetic character of our motor systems (Kelso & 

Schöner, 1988): a multiplicity of muscles assemble into a functional dynamic 

system that enables a relatively stable movement that repeatedly and efficiently 

solves motor problems (Bernstein, 1967). To get a grip on this theoretical idea, 

stand for a while on one leg and observe a complex play of the muscles of your 

supporting leg: never stable, in continuous co-adjustments, they enable your 

continuous still position. Try then to swing your free leg. You may notice how your 

posture became shakier for a while and then regained a relatively stable balance, 

continuously supporting your swings by iteratively modifying the position of your 

mass center. 

Perceiving in a new way 

Through “synergies of meaningful movements” not only the motion but the world 

itself is constituted for the subject (Sheets-Johnstone, 2011, p. 453). Just like the 

muscles’ activation is organized into synergies, our sensors organize into 

meaningful perceptual experiences: we come to discern from the world what is 

relevant to our enactment. Attentional anchors—namely, perceptual structures 

(Gestalts) that arise to serve enactment or are given by educators to support new 

forms of action—act as a proxy between the world and the actor (Abrahamson & 

Sánchez-García, 2016). Notice, when swinging your leg, you likely stopped being 

focused on the muscles of your supporting foot but paid attention to the swing 

trajectory of your free leg— imbricating perceptual structure on the world. 

A focus on the living body moving in the environment suggests that the 

environment is not independent of the perceiver but provides affordances—

possibilities to act (Gibson, 1986). Perception of affordances is direct but not 

innate. On the contrary, it constantly develops as a learner discovers higher-order 

variables through differentiating relevant information. It is through movement in 

the environment that learners can come to perceive “aspects of stimulus 

information that persist despite movements of the perceiver (or are actually brought 

into existence by those movements), and that correspond to relatively permanent 

features of the objective situation. (Neisser, 1987, p.12) 

Applying those ideas to Dynamic Geometry Environments, a figure can be 

conceptualized as a set of affordances that the solver comes to perceive through 

dragging. Further, we may expect that, through dragging, a learner will discover 

new mathematical invariants (Leung et al., 2013). Similarly, Mason (1989, 2008) 

characterizes learning by what (focus) is attended to and how (form) the objects are 
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attended to. He distinguishes five different forms of attention: holding the whole 

without focusing on particularities or discerning details among the other elements 

of the attended object. From there, one may recognize relationships between 

discerned elements, perceive properties by actively searching for additional 

elements fitting the relationship, and, finally, reason based on perceived 

properties. Mason’s theory has been applied by Palatnik (2022) to the analysis of 

embodied activities for learning spatial geometry—he identified correlations 

between students’ physical interactions with artifacts and their attentional shifts to 

inherent properties and structures. 

Finally, Marx introduced the idea of “sensuousness as practical activity” (Radford, 

2021), allowing a further understanding of human perception as shaped by cultural 

practices within society. Accordingly, Vygotsky considers perception to be a 

higher-order function—a complex systemic social entity that cannot be reduced to 

sensation per se (Vygotsky, 1978). Human practices in specific domains, such as 

archeology, reveal professional vision: an ability to notice structures that are 

unnoticeable by a non-experienced eye (Goodwin, 1994). In like vein, Radford 

(2010) discusses the role of theoretical perception in mathematics: patterns that 

educated adults perceive, students must learn to distinguish. Teachers appropriate 

multimodal resources, such as gesture and rhythm, to highlight those patterns in 

the environments (Goodwin, 2018; Radford, 2010). To make sense of teachers’ 

rich utterance, students actively scan the environment to establish concordant 

perception (Roth & Thom, 2009; Shvarts, 2018). This is why designing special 

fields of promoted actions might be beneficial for learning to move and perceive 

in a new way (Abrahamson & Trninic, 2015). 

Naming in a new way 

While new ways of moving and perceiving are the key parts of embodied 

mathematics learning, embedding those individual—often idiosyncratic—dynamic 

practices into cultural discourse and environments requires further theorization. In 

embodied design, learning might start by developing new sensorimotor 

coordination or individual exploration of an artifact that triggers new forms of 

perception and only later becomes gradually interconnected with more and more 

advanced cultural artifacts (Abrahamson et al., 2011) and scientific discourse 

(Flood, 2018; Mariotti, 2009). Importantly, artifacts and discourse are not self-

evident for students. While mostly rooted in Vygotskian ideas, theories vary in 

explaining how artifacts and discourse come to be part of students’ mathematical 

knowledge 

Theory of Semiotic Mediation (TSM) argues that the relation between the artifact 

and the learners in the course of accomplishing a specific task is expressed by signs 

such as speech, gestures, symbols, and tools (Bartolini Bussi & Mariotti, 2008). 

On the one hand, when repetitively accomplishing a (well-designed) task with an 

artifact, a solver develops schemes (Vergnaud, 2009), which constitute a “hidden” 

psychological component associated with the visible actions and with the other 
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signs produced. An artifact and a scheme constitute an instrument—a 

psychological construct used for further instrumental actions (Verillon & Rabardel, 

1995). On the other hand, while solving the task and interacting with peers, a 

learner produces personal signs that are closely related both to the task and to the 

artifact, thus constituting personal meaning. The semiotic potential of the artifact 

with respect to the mathematical knowledge allows the teacher to conduct 

mathematical discussions involving a variety of signs (e.g., Mariotti, 2009). In 

these discussions, the signs produced by the students (artifact signs) are gradually 

transformed into shared signs. Such shared signs generalize the situated signs 

referring to personal meanings, and are transformed into mathematical signs 

(through successive didactical cycles) to the knowledge being taught. 

Other theories avoid talking about meaning and scheme as independent cognitive 

constructs, thus removing representationalist ideas from mathematics education 

discourse. Following the commognition perspective (Sfard, 2008), sensorimotor 

processes comprise a mathematical object’s realization tree, consisting of various 

inscriptions, such as formulas, sketches, definitions, and primary objects of the 

world interconnected. From a functional dynamic systems perspective (Shvarts et 

al., 2021), artifacts and discourse directly extend the dynamics of students’ bodies 

once they are appropriated for solving the task. The students’ ways of acting and 

naming come to correspond the cultural forms of acting and naming through joint-

attention with a teacher, when a student’s and a teacher’s sensory-motor processes 

are coordinated in common environment (Shvarts & Abrahamson, in press). 

Overall, cultural artifacts and discourse transform students’ perception by making 

it mediated by the artifacts (Bartolini Bussi & Mariotti, 2008; Vygotsky, 1978) and 

allows them to decrement conceptual aspects and see mathematical properties 

(Leung et al., 2013; Mason, 2008). Soon, though, perception accommodates from 

mediated to immediate, as the artifacts seamlessly “stick” to the bodily system,  

giving rise to new forms of concrete experience (Shvarts et al., 2022). Thus, 

artifacts, including discourse, appear to be new tools for actions and lenses for 

perception: a student equipped with a ruler sees distances as measurable; or, 

equipped with a notion of exponential growth, she readily anticipates the shape of 

a graph depicting epidemic spread of a disease (cf. Vérillon & Rabardel, 1995, on 

utilization schemes). 

DESIGN PRINCIPLES OF EMBODIED LEARNING 

The design principles (DPs) underlying artifacts used in embodied learning are 

motivated by the perspective that human beings think with and through their body 

(Merleau-Ponty, 2002; Radford, 2021). This perspective has stimulated many 

design-researchers to create artifacts fostering bodily engagement in mathematics 

learning. This section, organized along five DP, outlines tenets and heuristics 

shared by all the RF authors.  
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DP1: Involve students’ bodies in the learning process 

This involvement can be achieved through perception-based design artifacts or 

action-based design. The first genre builds on learners’ early mental capacity to 

draw logical inferences from the perceptual judgment of intensive quantities in 

source phenomena; the second genre builds on learners’ perceptuomotor capacity 

to develop new kinesthetic routines for strategic embodied interaction 

(Abrahamson, 2014). 

The dualistic view of cognition, which distinguishes between the mind and the 

body, considers our body movement (e.g., gestures and gaze) as a window through 

which we can make inferences about the learner’s perception and thinking. On the 

contrary, the monistic view of cognition, which considers the unity of the body and 

mind, considers our body movement a constitutive part of our thinking, because 

the use of any kind of artifact creates a specific kind of interaction and, thus, a 

specific kind of thought. Hence, our second principle for embodied environment 

design:  

DP2: Offer immediate sensorimotor interactions with artifacts 

Perception is viewed as a cognitive structure that emerges first as the psychological 

means of enabling some stable form of coordinated motor engagement with the 

environment, then as the reified semiotic kernel of mathematical practice, 

including verbal and nonverbal language, gestures, extra-linguistic expression, and 

inscription (Abrahamson & Mechsner, 2022). These semiotic means give rise to 

learners becoming aware of mathematical knowledge embedded in the artifact 

(Bartolini Bussi & Mariotti, 2008;  Radford, 2021). Hence, our third design 

principle is 

DP3: Attend to the semiotic sensitivity of the design 

Semiotic sensitivity considers the signs included in the artifacts, which can be 

produced by the educators or by the students through solving a task. Designers 

should deeply reflect on the genre of signs and their relationship with mathematical 

knowledge, which they expect to connect through the activities with the artifacts. 

They should also reflect on the ways students will interpret and endow with 

meanings the several genres of signs. For example, the designer should be sensitive 

to the colors used in the artifact and the potential associations between these and 

the target mathematical knowledge. Mathematical understanding happens when 

the learners are able to convert from one semiotic register (representation) to 

another and to treat within the same semiotic register (Duval, 2006). Thus, our 

fourth principle: 

DP4: Include a variety of semiotic registers and artifacts that potentiate 

mathematical perception and discourse 

Gallese and Lakoff (2005) claim that sensory-motor system of the brain is 

multimodal and theorize language as multimodal as it includes speech, gestures, 

drawings. Thus, to understand cognitive processes we should analyse all the 
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modalities  (Arzarello & Robutti, 2010, Abrahamson et al, 2020). The embodied-

design approach puts forward that learning new concepts begins with discovering 

new ways of acting in the environment (Abrahamson & Bakker, 2016). While 

sprouting from enactment, embodied activities further inevitably require socially 

scaffolded “languaging” to enter cultural discourse (Flood, 2018).  Multimodality 

lies at the core of learning. Thus, our fifth design principle is: 

DP5: Foster multimodal engagement and “languaging”. 

DESIGN OF EMBODIED LEARNING FOR THE DIFFERENT 

MATHEMATICAL TOPICS 

Embodied design: A framework in search of a theory 

Originally emanating from a researcher’s practical experience as a mathematics 

tutor and resource innovator, embodied design (Abrahamson, 2014) gradually 

sprouted theoretical roots. These roots wandered among different grounds, at first 

testing “conservative” forms of embodiment, such as the cognitive semantics 

theory of conceptual metaphor (Lakoff & Núñez, 2000), conceptual symbol 

systems (Barsalou, 1999), and various intellectual foundations of gesture studies, 

such as gesture as simulated action (Hostetter & Alibali, 2008). However, micro-

ethnographic analyses of data collected in empirical evaluations of embodied-

design activities were raising challenges to the basic epistemological and  

ontological assumptions of those theories. Moreover, Dor Abrahamson was 

affiliated with Uri Wilensky’s Center for Connected Learning and Computer-

Based Modeling, where he had developed computationally enabled projects to 

foster youth understanding of natural and social phenomena from a complexity 

perspective, and so, Abrahamson had espoused the methodologies of dynamic 

systems theory as his modus operandi in modeling the ontogenetic emergence of 

conceptual understanding in socio-cultural contexts (Tancredi, Abdu, et al., 2022). 

Still wandering, embodied design drew on movement science (Abrahamson & 

Mechsner, 2022), evolutionary biology (Abrahamson, 2021), dance scholarship 

(Abrahamson & Shulman, 2019), and contemplative practice (Morgan & 

Abrahamson, 2016). Increasingly radicalized, though, embodied design turned to 

ecological psychology (Gibson, 1986), coordination dynamics (Kelso, 2000), and 

their amalgamated ecological dynamics (Araújo et al., 2020), and then further 

“left” to enactivism (Hutto & Myin, 2013), which led to collaborative scholarship 

(Abrahamson & Sánchez–García, 2016). While embodied design is fairly 

grounded now, it keeps searching for nutrients that will increase the integration, 

coherence, and generalizability of its theoretical models. Currently the work looks 

to elaborate on Vygotsky’s cultural–historical theory of cognitive development 

using phenomenological and complexity tools (Shvarts & Abrahamson, 2019, in 

press). Below we exemplify two genres of activities emanating from the research 

program, perception-based and action-based embodied design (Abrahamson, 

2014). 
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Perception-based genre of embodied design: The Seeing Chance project 

Humans have innate or early-developed perceptual sensitivity to ecologically 

adaptive exemplars of intensive quantities, that is, quantities that are scientifically 

defined as a/b, for example, velocity (distance / time), aspect ratio (height / width), 

or likelihood (favorable events / possible events) (e.g., Xu & Garcia, 2008). We 

can perform judgments on these perceptually privileged intensive quantities 

(Abrahamson, 2012), such as determining the representativeness of color samples 

from a mixed-color population, just as long as the quantities are presented 

asymbolically (cf. Zhu & Gigerenzer, 2006). Yet such tacit perceptual capacity by 

no means implies explicit mathematical knowledge. To the extent that educators 

wish to leverage students’ tacit capacity as a cognitive grounding for conceptual 

understanding, further design resources and mediation techniques are required to 

coordinate the natural and cultural. Abrahamson (2012c) sought to leverage tacit 

judgments of likelihood as an epistemic grounding for the notion of probability.  

Figure 2: Selected materials from the Seeing Chance design for the binomial.  

Project page:  https://edrl.berkeley.edu/projects/seeing-chance/ 

                                  

a.                                           b.                                       c. 

The marbles scooper (Fig. 2a) is a random generator approximating a binomial 

experiment. Bearing 4 concavities, the scooper draws samples of 4 marbles from a 

tub containing equal numbers of green and blue marbles. Young students correctly 

predict that the most likely outcome is a scoop with 2 green marbles and 2 blue 

marbles, the least likely scoops are of uniform color, etc. However, students do not 

attend to the specific order (pattern) of the marbles sample, only to the green-to-

blue ratio, which they compare to the green-to-blue ratio in the tub. Students then 

use a set of empty 2-by-2 iconic formats of the scooper (Fig. 2b) and green and 

blue crayons to create “all the things we could get when we scoop.” The tutor 

guides them to create not just five cards (e.g., the bottom row of Fig. 2c) but all 16 

permutations. Once the entire sample space is completed and configured, students 

spontaneously realize how to perceive it as a model of the source phenomenon that 

enables them to argue for their initial judgment. This negotiated learning sequence 

has been called product before process (Abrahamson, 2012b), where students 

perform a semiotic leap (Abrahamson, 2009) via abductive reasoning 

(Abrahamson, 2012a) that bridges the natural–cultural gap.  

Action-based genre of embodied design: The Mathematics Imagery Trainer 

https://edrl.berkeley.edu/projects/seeing-chance/
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Varela et al. (1991) submit that “(1) perception consists in perceptually guided 

action and (2) cognitive structures emerge from the recurrent sensorimotor patterns 

that enable action to be perceptually guided” (p. 173). The Mathematics Imagery 

Trainer is an instrumented field of promoted action designed to elicit recurrent 

sensorimotor patterns from which emerge cognitive structures grounding targeted 

concepts, such as proportion (Abrahamson, 2019). 

Figure 3 features a Mathematics Imagery Trainer for proportion. The student’s task 

is to place the cursors at locations that make the screen green. Unknown to the 

student, the screen is green when the respective heights of the two cursors over the 

screen base relate at a set ratio, here 1:2. Through exploration (Fig. 3a), the student 

happens to make the screen green (Fig. 3b). Asked to move her hands continuously, 

keeping the screen green, she keeps the interval between the hands fixed, thus 

violating the ratio (Fig. 3c). With time, she realizes that the interval should change 

with the height. 

Figure 3. The Mathematics Imagery Trainer for Proportion—the Parallels motor-

control problem: schematic depiction of four key events in learning to enact the 

conceptual choreography. https://edrl.berkeley.edu/projects/kinemathics/ 

 

a. b. c. d. 

Figure 4. Three schematic interface modes of a Mathematics Imagery Trainer for 

Proportion—the Parallels motor-control problem 

 

a.                                b.                                   c.  

Having worked in continuous space (Fig. 4a), we then introduce a grid on the 

screen (Fig. 4b). Students appropriate this artifact as a pragmatic-cum-semiotic 

resource, enhancing the enactment, explanation, or evaluation of their method, 

shifting into math discourse. Once we introduce numbers (Fig. 4c), students draw 

on their multiplicative knowledge to re-describe their actions. So doing, they are 

able to coordinate logically between their various strategies (Abrahamson et al., 

2011, 2014). At the same time, classroom observations reveal that appropriations 

of a grid or numbers might be problematic for some students (Alberto et al., 2022). 

https://edrl.berkeley.edu/projects/kinemathics/


Palatnik et al.   

1 - 170 PME 46 – 2023 

Instead, children might prefer to use self-invented artifacts, such as rulers or dice, 

for marking the length and measuring the ratio. As Palatnik and Abrahamson 

(2018) found, in the absence of a grid, students may utilize the cursor icons both 

for measuring and to develop rhythmic forms of movement that facilitate task 

performance.   

Moving action-based embodied design to more advanced mathematical topics: 

parabola, trigonometric functions and statistics 

The domain of functional relations appeared to be a natural area for further 

exploration of the action-based design genre. Graphs are the most usual way to 

represent functions, however, perceiving a Cartesian plane requires special forms 

of perception (Krichevets et al., 2014; Radford, 2010), avoiding focusing on 

irrelevant aspects of a graph (Arcavi, 2003). The action-based embodied design 

promotes the development of new forms of motor action and, thus, new forms of 

perception (Abrahamson, 2019). For example, a mathematical perception of a 

parabola would include seeing the curve as the set of points that are equidistant 

from a directrix and a focus. In our action-based embodied activities for parabola, 

students play with a triangle’s vertex and discover that triangle is green when it is 

isosceles, and its vertex is equidistant from a line and a point (Shvarts & 

Abrahamson, 2019, Figure 5, a, b). In further mathematization, they interconnect 

the trace of the isosceles triangle’s vertex with a quadratic equation (Figure 5 c). 

Figure 5. Action-based embodied activities for learning parabola. The triangle 

turns green when AC=AB. The letters and the parabola were not visible to the 

students. 

 

Figure 6. Action-based embodied activities for learning trigonometry. 

 
Learning trigonometric functions is another difficult topic as students struggle 
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coordinating visual inscriptions that present trigonometric functions—triangle, 

unit circle, and graph (Presmeg, 2008). After an unsuccessful attempt to create a 

field of promoted action for connecting different inscriptions (Alberto et al., 2019), 

we prompted students to reinvent a sine graph based on the interaction with the 

unit circle. Supported by continuous feedback, students would establish new 

sensory-motor coordinations: at first, they would uncover the correspondence 

between the length of an arc on a unit circle (Figure 6a), and further the 

correspondence between the sine value on the unit circle and y-coordinate on the 

graph (Figure 6b). Combining these two coordinations (Figure 6c), they draw a 

line that matches the sine graph, reflect on its construction, and embed their 

sensory-motor findings into the algebraic notations. 

Contrary to the instrumented field of promoted actions where the designers 

introduce mathematical artifacts, we melted the target artifacts (Shvarts & Alberto, 

2021), i.e., deliberately removed a sine graph and parabola from the digital 

environments. Instead, we created conditions in which students could reinvent 

those artifacts themselves. Based on our 4-year design research results, the same 

principle of melting holds for any support the system might provide for the 

students. For example, if a segment connects the points on a unit circle and grid, 

the students talk about keeping this segment horizontal and miss the 

correspondence of sine values across visualizations. 

Figure 7. Embodied activities to study histograms. Green arrows represent the 

degrees of freedom for possible movements and are not visible to the students. 

 

As empirical analysis with eye-tracking shows, cultural perception of histograms 

requires specific sensory-motor strategies (Boels et al., 2019). We created the 

fields of promoted actions that would solicit the actions that match cultural 

sensory-motor strategies for building a histogram. Instead of providing continuous 

feedback, as in the action-based genre, we constrained the students’ actions leaving 

only one degree of freedom, and presented the motor problem as meaningful word 

problems.  

The students would reinvent histograms to represent the heights of all children in 

a class by solving motor problems of (1) moving the balls along the x-axis to 

represent the height of individual children (Figure 7a) and (2) moving the bars 

along the y-axis to represent how many children fall into a particular interval of 

height (Figure 7b). Note, similarly to the designs on parabola and trigonometry, 

the target mathematical artifact—a histogram—was melted (see Boels et al., in 

press for more details). 
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Further, the students explore the mean on a histogram by manipulating a balance 

line (Figure 7c), thus promoting the development of a new form of perception 

based on their experience of balancing. This design builds on students’ natural 

capacity to estimate weight based on 2D representations, thus resembling the 

perception-based design (Abrahamson, 2014). However, rendering students’ 

embodied intuitions from other modalities needs further theorization. 

Sensing number sense: the case of Fingu and TouchCounts 

The importance of using fingers in the development of number sense has been 

studied within a growing body of mathematics education literature (e.g., 

Baccaglini-Frank & Maracci, 2015; Coles & Sinclair, 2018); much of such 

literature attends to issues of embodiment in learning mathematics, acknowledging 

that sensorimotor activity such as touching, moving and seeing are essential 

components of mathematical thinking processes (e.g., Radford 2021). Moreover, 

many of these studies have focused on children’s learning with multi-touch apps.  

In particular, Baccaglini-Frank and Maracci (2015) and Baccaglini-Frank et al. 

(2020) have tried to associate childrens’ actions (especially gestures) in certain 

multi-touch apps with their number sense abilities being elicited. In doing so, we 

have been pursuing the hypothesis that apps that use multi-touch capabilities may 

uniquely influence children’s mathematical understandings and strategy 

development concerning number sense, also shared by other researchers (e.g., 

Tucker & Johnson, 2022). An interesting construct in terms of embodiment in this 

context  concerns conceptually congruent gestures (Tucker & Johnson, 2022), 

which involve actions with fingers matching the quantity. For example, a group of 

three fingers placed “all at once” (Figure 8a) creates in TouchCounts a herd of 3 

(Figure 8b). 

Figure 8: a) Placing three fingers all-at-once on the screen in the Operating World 

of TouchCounts; b) the herd of 3 that is formed after the fingers are lifted (from 

Baccaglini-Frank et al., 2020, p. 785) 

a     b  

In both our studies, we use Vergnaud’s notion of scheme (2009), focusing 

especially on operational invariants: the implicit knowledge which structures the 

whole scheme, driving the identification of the situation and its relevant aspects, 

and allowing to select suitable goals and inferring the rules for generating 

appropriate sequences of actions for achieving those goals. While being aware that 

the notion of a scheme might be seen as being in opposition to embodied cognition 

approaches, we followed other colleagues. We tried to gain from the two 
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perspectives useful analytical tools to describe crucial cognitive aspects of 

students’ interactions with digital artifacts. 

In the former study, we found children’s interactions with the app Fingu and 

LadyBug Count to elicit mostly number sense abilities related to cardinality, that 

is, abilities elicited in answering the question “How many?” via one-to-one 

correspondence between physical sets of objects or between or between objects 

counted and spoken numbers and understanding that the last number spoken in a 

counting sequence names the quantity for that set. On the other hand, in the latter 

study, we used the two “worlds” offered in TouchCounts, showing how certain 

tasks we had designed could elicit fundamental number sense abilities also related 

to ordinality, which comprises associating number symbols to number words, 

knowing the number symbols sequence, knowing the number words sequence, and 

knowing what number comes before or after a certain one (Baccaglini-Frank et al., 

2020). The openness of the microworlds in TouchCounts offers the possibility of 

proposing many interesting and different tasks, as well as “play situations”, that 

can be addressed and solved in countless ways, each with potentially different 

gestures and schemes. 

Experience the dynamics and touch the derivative 

The learning environment includes an AR prototype that collects real-time data 

regarding a dynamic phenomenon (a ball on an inclined plane) during a physical 

experiment. The sensors collect the data, analyze them, and instantly display their 

mathematical representations to the students on designated headsets (Fig. 9 right). 

The students will thus be able to observe both the real-world experiment and the 

mathematization of the dynamic object immediately and in real time. When 

looking through the AR device, the students not only perceive the real experiment, 

as shown in Figures 9 and 10, but also an elaborated mathematization, which is 

described below. Figure 9 presents the Hooke’s law experiment, which examines 

the relationship between the mass and elongation of a spring. Figure 10- the Galileo 

experiment, which examines the relationship between time and distance that a cube 

travels as it slides down along an inclined plane.  

Figure 9. Students collected data by the headset (left side), the display students 

see, which includes a graph of the mass-length function, order pairs of mass of 

the cube, and the length of the spring (right side). 
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The following mathematization-decisions have been made for the development of 

the AR design. Concerning the Hooke’s law experiment, the AR device provides 

a coordinate system with the weight of the mass on the x-axis and the length of the 

spring on the y-axis. Whenever a certain weight is added, the elongation of the 

spring gets larger; the AR device detects the new length and plots it corresponding 

to the added weight. Adding weight step by step, a diagram is built up showing the 

relation between the weight and the length of the spring. This diagram overlays the 

real experiment (Fig. 9, left) and develops with it. A table of values can also be 

displayed.  

For the Galileo experiment, the AR device detects the position of the cube when 

sliding down a ramp. The AR device provides a scatter plot that plots the time (x-

axis) versus the distance (y-axis) at the same time. The distance at a given moment 

is between the original position of the cube and the current distance along the ramp 

(see Fig. 10b). The AR device also displays a table of values showing the 

corresponding time and distance. 

These design decisions, accordingly, allow us to enhance real experiments and 

body involvement with robust mathematical representations like scatter plots and 

tables of values. For Hooke’s law experiment, students can interact with the 

physical model by carrying the cubes, feeling their weight, hanging the cubes to 

the spring, observing the elongation of the spring, and interpreting the relation 

between the weight and the length of the spring by observing the evolving scatter 

plot. The AR device also shows the length in numbers with a yellow ellipse (Fig. 

9, right), which helps the students to better relate the length of the spring to the 

graph plotted in the diagram.  

Figure 10. (a) Galileo experiment: a cube travels as it slides down along an 

inclined plane. (b) The graph and table of values of the distance-time function of 

the cube movement that one of the students sees through his headset. 

a         b  

One of the specific aspects of the mathematization in both experiments that 

contributes to the development of conceptual understanding is the simultaneous 

presence of different representation modes for the same phenomenon. It is also 

worth mentioning that the data presented on the headsets are affected by the 

students’ location and the angle the students are looking at the physical objects. 
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Figure 11. a) The software interface; b) A green tangent line and the derivative 

graph are created simultaneously with the hand’s movement; c) If the student is 

not close enough to the graph, the tangent line becomes red 

 

An additional embodied learning environment described here is designed with the 

support of an AR headset called Magic Leap: it is a pair of glasses through which 

the user can see reality and the augmented objects. In the default interface of the 

application, the student can choose among seven elementary types of functions 

(upper part of Figure 11a). In the lower part of the interface, the gestures useful to 

interact with the technology are recalled jointly with their function (Figure 11a). 

When selecting one of the functions, a Cartesian system with numbered axes 

appears, showing the selected function in blue color (Figure 11b). The learner is 

asked to move his hand along the graph: simultaneously with the hand’s 

movement, a green tangent line appears, and the derivative curve is sketched point 

by point in the same color (Figure 11b). Moreover, a yellow number denoting the 

value of the slope of the tangent line is displayed. The student should be close 

enough to the function graph so that the tangent line is displayed. Otherwise, the 

line becomes red instead of green, and the derivative graph is not created (Figure 

11c). 

The design principles underlying this software were inspired by Alberto et al. 

(2019) work in which students can create the graph of a function by coordinating 

their hands’ movement along a specific constraint. Two a priori hypotheses 

underlie this learning environment. First, since the environment juxtaposes the 

function graph, its derivative function graph, and the hand movement, students 

should come up with conjectures about the mathematical relationship between the 

two graphs. Second, body involvement should help students find that relationship 

by ‘feeling’ the slope behavior as they move and control their hands. 

Constructing and diagramming geometry designs 

Johnston-Wilder and Mason (2005) pointed out that “A central feature of geometry 

is learning to ‘see’, that is, to discern geometrical objects and relationships, and to 

become aware of relationships as properties that objects may or may not satisfy” 

(p.4). However, what constitutes learning to ‘see’? If learning is “education of 

perception” (Goldstone et al., 2010), how do we design the learning environments 

that “take the natural affordances of our long-tuned perceptual systems, which are 

at their core spatial and dynamic, and retask them for new purposes” (ibid p. 280)? 
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Echoing Freudenthal (1971), how do we reclaim learning geometry as a living 

experience for students? Several lines of DBR attempt to answer these questions. 

Co-construction of human-scale tangible models 

Consider a group of students first building a human-scale model of a geometric 

body while referring to its two-dimensional diagram and textual description and 

then using this model to explore the properties of the polyhedron (Figure 12). 

Several variations of this relatively simple goal-oriented problem-solving design 

provided various insights into the multifacet nature of students learning to ‘see’ 

polyhedra properties (Benally et al., 2022; Palatnik & Abrahamson, 2022; Palatnik, 

2022).  

Figure 12: The example of collaborative co-construction geometry activity.   Left 

and center—the instruction; Right—participants constructing a model 

Using the kit provided to you, your team has to 

construct a three-dimensional model of the 

following geometric solid, a polyhedron.  

The polyhedron has the following properties:  

All the faces are congruent; The same number 

of edges converges at each vertex 

 

 

The construction problem has several perceptual-material-social characteristics 

that influence students’ actions. When constructing a model, each student has a 

unique perspective on the task at hand due to the natural constraints of human 

perception. Moreover, participants must simultaneously consider the dimensions 

and material of the model (human-size, tangible) and the instruction (hand-held, 

2D diagram, and text printed on paper). Constructing the model jointly, students 

are also constrained by the actions of others and the physical features of the model. 

To succeed, they must coordinate their actions and make their multimodal referents 

to the properties of the emerging structure mutually intelligible. 

Palatnik and Abrahamson (2022) presented theoretical foundations and empirical 

arguments for a set of embodied spatial-geometry curricular resources for middle 

school. In the spirit of Felix Klein’s statement, “A model—whether it be executed 

and looked at, or only vividly presented—is not a means for this geometry, but the 

thing itself” (Klein 1893, p. 42, cited in Halverscheid, 2019), they conjectured that 

tasks in which students construct 3D objects are more than “working with 

manipulatives”. In these activities, students use their natural capacities of 

multimodal perception and collaborative action. We hypothesized that in an 

attempt to improve and coordinate collaborative actions aimed at building a model, 

the participants would come to recognize differences in the ways they perceive the 

model and attune toward each other’s perspectives. The need to achieve a common 

goal will force each participant to explicate reflections on tacit perceptual 

mechanisms. The student’s actions become more complex as the model grows and 
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becomes more composite. In turn, a need to collaborate and communicate these 

efforts forces participants to engage iteratively in more and more complex forms 

of reasoning and expression.  

Figure 13: An action leads to a shift of attention due to a change of perspective: 

tacit symmetry becomes visible 

    

Initial designs of the collaborative co-constructive activities were explored in the 

ongoing DBR project. Palatnik (2022) applied the analytical apparatus of Mason’s 

shifts of attention theory to investigate why and how using physical models of 

different scales can facilitate learning of (spatial) geometry. The study 

demonstrated that students’ collaborative physical actions and multimodal 

perception triggered shifts in the focus and structures of attention that, in turn, led 

to a problem-solving breakthrough. In particular, having tilted the structure onto a 

vertex, the students perceived an icosahedron as tripartite: two opposing “bases” 

and a connecting “belt” (Figure 13). Benally et al. (2022) reported that models of 

different scales landed students different affordances for exploration, for noticing 

invariant scale-free features of a geometric object and influencing students’ 

collaboration dynamic. 

In a similar setting, to solve the problem of comparing the volume of pyramids 

(Figure 14 left), the students generated the auxiliary problem of defining the shape 

between four small tetrahedrons (Figure 14 center). Students repurposed sheets of 

paper lying on the desk as polyhedron faces (c.f. self-invented artifacts in Alberto 

et al., 2022). They also used their ability as a group to cover all the faces 

simultaneously. Then, students continued by counting the faces and defining: “The 

polyhedron between four triangular (pyramids) has eight identical faces. Each face 

is an equilateral triangle.”  When a similar activity was conducted during PD, 

discovering that a simple rotation of the model facilitates seeing its structural 

features became an insight for teachers: “Now I can not unsee two pyramids with 

a common square base” (Figure 14 right).  

Figure 14: Shaping a void through collaborative action—rendering a contested 

object into an articulated and inspectable form (red lines are for readers’ 

convenience) 
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To summarize: co-construction and exploration of tangible models is a robust 

activity architecture for learning through the surfacing and negotiating learners’ 

perspectives on situated phenomena; students’ perception is active and 

enculturated through participating in the social enactment of the practice of 

construction; students’ critical insights in problem solving can be characterized as 

shifts in perceptuomotor attention leading to the refinement of geometric 

argumentation while students’ realization of available 3D medium and social 

setting affordances catalyzes these shifts.  

Learning as making: the case of 3D pens  

Grounded in Papert’s Constructionism (Papert & Harel, 1991), several lines of 

research (e.g., Ng & Ferrara, 2020; Palatnik, 2023) are premised around the use of 

3D printing (specifically, the “3D Pens”) as a form of embodied technology for 

“learning-by-making.” 3D printing can extend 2D products to the 3D environment; 

unlike traditional manipulatives preselected by teachers and which are usually 

fixed in size and how it is made, 3D printing can provide students with 

opportunities to generate 3D models flexibly, which Ng and Ye (2022) termed 

“embodied making” with 3D Pens.  

Figure 15. Drawing a cube with a 3D Pen. Creating and manipulating a triangle 

drawn by a 3D Pen 

  

In this light, the work of Ng and colleagues’ research considers the potential 

transformations that 3D diagramming can induce in mathematics teaching and 

learning (Ng & Sinclair, 2018; Ng et al., 2018; 2020). Given our interests in 

embodied mathematics learning, 3D Pens afford increased immediacy and sensory 

interactions with mathematical representations that are lacking in screen-based 

tools. This work has shown the affordances of 3D diagramming as a practice of 

mathematical diagramming in engendering students’ geometrical thinking.  

The first unique feature of 3D diagramming is the ability to draw in 3D, which 

overcomes the limitations of paper and pencil and improves the visualization of 

3D geometrical objects. For example, one way to draw a cube (Fig. 15 left), is 
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firstly to draw four straight “segments” on a surface to form a square, then four 

vertical “segments” that join the four vertices of the square, and four more 

“segments” in the air, while drawing an identical square parallel to the base. It is 

noted that in the process of drawing such a 3D object, one can visualize vertices, 

segments, and planes and observe the relations among the 0D, 1D, and 2D objects 

(Ng & Ferrara, 2020). Besides, 3D diagramming simulates the very process of 

gesturing; as the hand moves with the 3D Pen, a 3D model is generated. This 

unique nature of generating 3D models by one’s hands affords some interesting 

hand movement that could not be possible on flat surfaces. Moreover, 3D 

diagramming supports additional tactile experience by affording students the 

modality to touch, turn, flip and rotate 2D models drawn. Diagrams that would 

have been drawn using paper and pencil, such as a triangle, can be recreated and 

become physical objects that can be held, moved, and turned when drawn by 3D 

Pens (Fig. 15 right). This suggests the dual nature of embodied making as creating 

both a diagram and a physical, hands-on manipulative. 

GGBot  

The GGBot (short for “GREATGeometryBot”) builds on the convergence of 

physical and digital affordances, combining the well-known strengths and 

opportunities offered by Papert’s original robotic drawing-turtle (more recently 

developed into robotic toys like the “Bee-bot”) and LOGO programming with 

those of the block-based programming language SNAP! (Baccaglini-Frank et al., 

2020). The GGBot can hold a marker between its wheels (Fig. 16a). When the 

marker is placed and the GGBot executes a code, the marker draws out its path as 

it moves on a sheet of paper on the floor. A second marker can be placed at the 

front, on the GGBot’s “nose”, to leave a trace of its movement when it changes 

direction. These design features were implemented so that GGBot’s traces can 

provide situated signs (Fig. 16e) that can be elaborated, through appropriate tasks 

and mathematical discussions, into geometrical notions, such as segment, vertex, 

angle, rotation, and polygon. 

Commands are given to the GGbot through SNAP!, a Scratch based interface that 

was customarily designed (Fig. 16 b, c, d), and they can be gradually added based 

on the teacher’s needs (Fig. 16c, d). The way in which codes are given to the 

GGBot is quite different from other robotic toys like the Bee-bot, because the 

blocks on the screen represent commands (in the machine’s language) that can be 

put together into codes (Fig. 16 b) that can be transmitted to the GGbot via a wifi 

module. These graphical blocks are virtual objects that “live” on a screen (touch-

screen of an interactive whiteboard, tablet, or computer screen); they are concrete 

enough to be accessible to and shared by the whole class and by each student. 

Moreover, they constitute another set of artifact signs that contribute to the 

complex network of signs emerging during activities and that can be put in relation 

with mathematical signs. Below is an example of the semiotic potential of a figure-

to-code task with respect to some of the geometrical notions listed above 
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(Baccaglini-Frank & Mariotti, 2022). A figure-to-code task consists in giving 

students the name of a figure and asking them to use the blocks to produce a code, 

so that when sent, the GGbot draws the nominated figure. For example: “Make a 

code so that the GGBot draws a square”. 

Figure 16: a) GGBot with a marker placed in its posterior holder; b) initial 

command set and example of code; c, d) commands with parameters for more 

advanced programming; e) drawing made by the virtual GGBot given the code in 

b) 

a. b.  c.  d.  e.  

Students need to envision the “square shape” as a contour, a path along its border 

that corresponds to the GGBot’s trace mark as it moves along such a path. Then, 

such a contour/path must be seen as a sequence of steps, leading to the realization 

of a code for the GGBot. A spontaneous approach consists in acting: imagining to 

be the GGBot and walking along the border of the figure (“acting the path”) and 

associating possible commands to the movements carried out (see Papert’s notion 

of “body syntonic” learning experiences (1980)). While it is straightforward to 

identify the four segments constituting the sides of the square and relate them to 

the step ↑ commands, which are translations, it might be more challenging to 

decide how to connect these four steps. This requires mastering the complex 

meaning of the Turn ↱ command (whether it is to the right or to the left), which is 

a “turn on the spot” (rotation) without translation. In this case, the traces left by the 

GGBot are thick dots left as the robot changes direction before taking another step 

forward. A consistent interpretation, leading to completing the drawing, also needs 

to put these points in relation with one another as the vertices of the square and as 

centers of the rotations of the external angles of that polygon. So, an essential 

feature of the semiotic potential of this artifact is its building on the relationship 

between the GGBot’s global movement and its breaking into steps and turning 

points and the geometrical meaning of a polygon at a global and analytical level. 

Moreover, especially if the student “acts the path”, a relationship needs to be 

conceived between the decomposition and transfer of complex continuous 

movement (of a child, with many joints working) to only two discrete components 

- steps and turns - corresponding to blocks of code that will determine the GGBot’s 

movement and the trace marks left on the paper. The GGBot also has a completely 

digital version (Fig. 16e) (https://sprintingkiwi.github.io/virtual- geombot-snap), 
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that is more similar to the LOGO turtle (though still in the block-based SNAP! 

environment) 

FUTURE DIRECTIONS 

We, the authors of this Research Forum, are excited by the prospects of working 

together to curate, taxonomize, explicate, counsel, debate, and promote 

embodiment perspectives on the design and facilitation of mathematics education. 

Together with our students and collaborators, our collective work ahead falls into 

six categories: theory, practice, design, dissemination, and academics, as we 

elaborate below. 

Theory  

Whereas our epistemological roots vary, we all look to model and foster 

mathematical learning as a process of mediated negotiation between, on the one 

hand, biologically endowed sensorimotor capacity for developing perceptuomotor 

skill and, on the other hand, culturally evolved artifacts, both instrumental and 

semiotical. These two “hands”—the biological and cultural—are pre-historically 

“bimanual,” in the sense that evolutionary processes have selected for our species’ 

natural as well as cultural adaptation—the human ecology is artifactual through 

and through. Yet, the field of educational research and design is still figuring out 

the balance between  “bottom-up” processes of discovery learning vis-à-vis “top-

down” processes of semiotic mediation (cf. Cole & Wertsch, 1996). 

What would be the ideal guided reinvention of mathematical concepts? That is, 

what comes first? Can “top-down” processes give rise to “bottom-up” symbol 

grounding? We believe that symbolic meaning must be grounded in sensorimotor 

experience (Harnad, 1990). At the same time, the field might pay more attention to 

prolepsis (Stone & Wertsch, 1984), a multimodal conversational technique of 

casting forward into the discursive space a yet-ungrounded structure as a mutually 

consensual target of sense-making. Micro-analysis of guided mathematical 

ontogenesis in task-based manipulation suggests that an effective proleptic 

methodology is to modify a student’s perceptual orientation toward the 

environment by shifting their attention toward elements in the shared domain of 

scrutiny that would afford a tighter sensorimotor grip (Shvarts & Abrahamson, 

2019, in press). This dyadic “dance” of attention, which serves humans in 

coordinating joint action, deserves further research. We hope to sustain our 

dialogue on prolepsis as a research focus for refining our theoretical alignments 

and contentions. Conducting empirical research studies on this central yet complex 

phenomenon could enable us to move forward collectively. 

Practice 

In a longitudinal study, Kosmas and Zaphiris (2023) have documented the 

instructional gains of introducing embodied learning into classrooms. Liu and 

Takeuchi (2023) argue for the diversification potential of embodied design 

specifically for racialized and minoritized students, while Tancredi, Chen, et al. 
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(2022) apply embodied design to building resources for students with atypical 

sensorial and motor capacity (see also Lambert et al., 2022), and Shvarts and van 

Helden (2021) demonstrate the digital reach of embodied design to remote 

students.  

Integrating embodied design into school hinges on adapting and casting these 

resources as promoting curricular objectives. Yet, successfully interleaving 

embodied activities into instructional routines stands to change the classroom’s 

epistemic climate, that is, students’ implicit sense of what forms of discursive 

contributions mark legitimate ways of thinking, knowing, and problem-solving 

(Feucht, 2010). Are students allowed to share their idiosyncratic metaphors 

(Abrahamson et al., 2012), “be” the graph (Gerofsky, 2011), or invent their own 

diagrams (diSessa et al., 1991)? As institutional discourse changes around what it 

means to know a math concept, curriculum experts would need to update 

assessments, and teacher educators would need to create professional development 

modules that adapt professional practice. 

Design 

The brave new “flipped classroom” world is increasingly migrating core 

instruction from classrooms to homes, only enhanced by the pandemic. Moreover, 

personal devices (e.g., phones) render digital content universally accessible. 

Consequently, online learning plays central roles in students’ conceptual 

development. In this context, embodied-activity applications could serve as 

productive resources, given that they offer dynamically engaging inquiry-based 

learning experiences. 

Multimodality is slowly returning to interaction-based digital educational 

resources, thanks to engineering breakthroughs in virtual and mechatronic 

technology. As such, future embodied design may rely more heavily on sensory 

modalities such as the haptic, tactile, kinesthetic, vestibular, and somatic that by-

and-large have been elided from interaction learning due to the technical 

constraints of early computational platforms. Eventually, as we achieve simulated 

augmentations of multimodality, we will return digitally to Fröbel’s Gift #1, the 

yarn ball (Abrahamson et al., in press).  

Dissemination 

Authoring the RF has created a community of practice with much shared common 

research interests and outreach ambitions. We see value in coordinating enterprises 

that go beyond individual publications or annual workshops. As a collective, we 

may stand to mobilize greater resources, garner greater attention, and reach greater 

audiences. One potentially productive project would be to build a website that 

curates for the general public resources and information on embodied mathematics 

learning. 
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Academics 

Change begins at home. As academicians, we need to be the change we want to 

see at large by creating in our own university departments graduate-level courses, 

specializations, and even programs dedicated to design-based research on 

embodied mathematics education. These developments could be supported through 

establishing special interest groups (SIGs) in annual conferences, such as those run 

by the Association for Computing Machinery (ACM), the International Society for 

the Learning Sciences (ISLS), and various regional networks, for example, the 

American Educational Research Association (AERA). At the same time, our 

academic activities should remain in dialogue with the wider community of 

research and practice. 
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