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Embodied Design: Bringing Forth Mathematical 
Perceptions 

Dor Abrahamson1  

ABSTRACT   Embodied design is a proactive educational research program that 
promotes and investigates humans’ universal capacity to understand STEM 
concepts. The program’s empirical work is centered on design-based research 
projects that contribute theory to the Learning Sciences through the practice of 
building, implementing, and evaluating experimental pedagogical architectures 
that inform instructional practice. Using both historical and emerging technologies, 
embodied-design activities are typically two-stepped: (1) draw on students’ 
evolutionary inclination for purposeful sensorimotor engagement with the natural 
environment; and only then (2) introduce heritage symbolic artifacts that students 
initially adopt to enhance the enactment, evaluation, or explanation of their 
intuitive judgments and actions, yet, in so doing, find themselves adopting 
normative disciplinary forms, language, representations, and solution procedures. 
Embodied-design researchers apply mixed methods — from ethnomethodological 
conversation analysis through to multimodal learning analytics and cross-
Recurrent Quantification Analysis — in analyzing empirical data of learning 
process, including records of students’ motor actions, sensory behavior, and 
multimodal utterance in conversation with peers and instructors. Several decades 
of projects across numerous mathematical content domains have increasingly 
implicated perception — a hypothetical Psychology construct believed to govern 
sensorimotor and cognitive behavior — as pivotal in explaining students’ capacity 
to first solve challenging motor-control coordination problems and then bridge 
through to discursive articulation of their movement strategy. As they attempt to 
operate the educational technology according to an unknown interaction regimen, 
new information patterns, e.g., an imaginary line connecting their hands, come 
forth spontaneously into students’ perceptual experience as their cognitive means 
of managing the enactment of the activity’s targeted movement forms. These 
emergent, proto-mathematical, multimodal, dynamical ontologies are then 
languaged and entified into consciousness, grounding the meaning of conceptual 
terminology and procedural routines. The embodied-design framework has been 
applied in building technologies for students of intersectional diversity, including 
populations of minoritized epistemic — linguistic practices and atypical neural, 
cognitive, and sensorial capacity. 

Keywords: Attentional anchor, Enactivism; Mathematics Imagery Trainer; 
Movement; Technology. 
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1. Introduction to Embodied Design

1.1.    Objectives, disciplinary foundations, inspirations, and ethical positionality 

Embodied design (Abrahamson, 2009, 2012, 2014, 2015) is a research quest to 
understand what it means to learn a mathematical concept. We ask the ontological 
question, what is a mathematical concept that we can understand it, and we ask the 
epistemological question, what is the mind that it can understand a mathematical 
concept? Operating from a broad reading of the cognitive sciences, we address these 
grand questions through examining how people teach and learn together in activities 
centered on technological artifacts we build and develop. In our theorizing, design craft, 
and data analyses, we are chiefly informed by the embodied paradigm shift in the 
cognitive sciences, which has foregrounded the formative role of situated sensorimotor 
interaction in the phenomenology of conceptual reasoning (Newen et al., 2018). 

The disciplinary affiliation of embodied design is the Learning Sciences, a field of 
study developed in the 1980’s by cognitive scientists wishing to apply their theories 
and methods to empirical investigations of educational practice. A premise of the 
Learning Sciences is that researchers should assume a transformative orientation 
toward educational problems — they should not only document, diagnose, and 
denounce these problems (e.g., the “misconceptions” genre) but dismantle and 
ameliorate the phenomena by way of building and evaluating theory-based alternatives. 
This quest to engineer better educational practices was called design experiments 
(Collins, 1992). With time, the name evolved into design-based research (Cobb et al., 
2013) or, variably, just design research (Bakker, 2018). In its ethical foundations to 
improve extant cultural practices, design-based research aligns well with revisionist 
readings of foundational tenets driving Lev Vygotsky’s cultural — historical 
psychology: Culture is taken not as a status quo but in its very essence as a system in 
flux that necessarily requires continuous adaptation to avail of envisioned opportunities 
and counter emergent contingencies (Stetsenko, 2017). Embodied design work is 
always conducted as design-based research studies (Abrahamson, 2015). 

Embodied design is inspired by educational visionaries, from Friedrich Fröbel, 
Maria Montessori, Caleb Gattegno, and Hans Freudenthal through to Seymour Papert, 
Mitch Resnick, Uri Wilensky, and Ricardo Nemirovsky, whose pedagogical artifacts 
creatively utilize technology to empower young learners. Originating in the University 
of California Berkeley at the Embodied Design Research Laboratory, embodied design 
is now pursued by collaborators and colleagues worldwide (Abrahamson et al., 2020). 
While most embodied design projects to date have addressed mathematical concepts, 
its framework caters more broadly to STEM domains (Abrahamson and Lindgren, 
2014). The embodied-design framework has been applied to a range of concepts 
(Alberto et al., 2021) to serve students of intersectional diversity, including populations 
of minoritized epistemic — linguistic practice (Benally et al., 2022), atypical neural, 
cognitive, and sensorial capacity (Lambert et al., 2022; Tancredi et al., 2021), and at 
remote locations (Shvarts and van Helden, 2021). 
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01  Embodied Design: Bringing Forth Mathematical Perceptions 3 

1.2.    Grounding conceptual meaning in perceptual phenomenology 

Embodied design is a design-based research effort that includes a design framework 
mobilizing its research agenda. The embodied-design framework informs the creation 
of learning environments, where students construct the meaning of mathematical 
concepts and procedures. The embodied-design research agenda is to understand how 
students construct mathematical meanings in these environments. 

By “construct” we draw on the theories of genetic epistemology (a.k.a., 
“constructivism,” Piaget, 1971), radical constructivism (Steffe and Kieren, 1994), and 
enactivist cognition (Varela et al., 1991) to stipulate students’ active role in making 
sense of the world through goal-oriented embodied engagement. As Piaget (1971) 
writes, 

Knowing does not really imply making a copy of reality but, rather, reacting to 
it and transforming it (either apparently or effectively) in such a way as to 
include it functionally in the transformation systems with which these acts are 
linked (p. 6). 

By “meaning,” in turn, we refer to a presymbolic notion (Radford, 2014) — 
a phenomenological orientation toward engaging the world purposefully that 
lends a sense of understanding for a mathematical sign, such as the notation “+” 
symbolizing the arithmetic operation of addition. The meaning of “+” might be 
experienced as bringing the hands toward each other to accumulate substance, whether 
one actually enacts this movement form or imagines doing so. This bimanual “image 
making” (Pirie and Kieren, 1989) or “concept image” (Tall and Vinner, 1981) 
associated with the notation “ ” is experienced as a non-linguistic dynamic bodily 
feeling of acting on the world — the embodied experience grounds the mathematical 
symbol in sensorimotor phenomenology (Harnad, 1990). Put colloquially, the meaning 
of a mathematical concept is not inside the signs we read or write — it’s what we 
experience when we first sense that we got its core idea, it clicked for us, we grasp it, 
we have a grip on it, we own it, we can improvise on it. But embodied design maintains 
that we can develop a new grip on the world even before we appreciate that it will 
become mathematically meaningful (Bartolini Bussi and Mariotti, 2008; Nathan, 2012; 
Vogelstein et al., 2019). This makes sense developmentally — we learn to add stuff 
with our hands long before we know the word “add” (L. B. Resnick, 1992); years 
before doing so lends meaning to the arithmetic idea of addition (Silverman, 2021). 

Embodied designs are necessary, because mainstream education may not occasion 
opportunities for students to develop canonical dynamical image perceptions as the 
core proto-mathematical meanings grounding their conceptual understanding. The 
research program of embodied designs is motivated by a concern for students’ general 
“absence of meaning” (Thompson, 2013) for mathematical concepts, which we 
diagnose as the absence of enactive capacity to understand the concepts. Embodied 
designs create the socio-material conditions for students to learn a mathematical 
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4  Dor Abrahamson 

concept by developing capacity to enact the movement form that later becomes the 
meaning of the targeted concept’s inscriptional markings. For example, what might be 
a presymbolic enactment of “proportion” that would be analogous to the bimanual 
enactment of “addition” discussed above? Most people are absent an enactive meaning 
for “proportion” — they are hard pressed to enact the concept, to gesture it. How do 
you grasp a proportion and mobilize it? What might be a dynamical invariant that you 
enact and maintain as you move in proportion to think through it, talk about it, teach 
it? And how about a parabola? A sine function on the unit circle? As we now explain, 
to develop enactive capacity is to develop new ways of attending perceptually to the 
world for organizing the enactment of movement forms. 

1.3.    Perception: The cognitive pivot from phenomenology to language 

According to Varela et al. (1991), “the enactive approach consists of two points: 
(1) perception consists in perceptually guided action and (2) cognitive structures 
emerge from the recurrent sensorimotor patterns that enable action to be perceptually 
guided” (p. 173). 

Embodied design emulates the enactive maxim by presenting students with motor-
control problems whose dynamic solution requires discovering sensorimotor patterns 
from whence emerge proto-mathematical cognitive structures. For example, a 
cognitive structure grounding the mathematical concept of proportionality emerges 
from solving a motor-control problem whose solution is raising the hands 
simultaneously at different constant speeds above a common surface. Try this. Place 
both hands palms down on your desk, and now raise them both at once, perhaps with 
the right hand moving double as fast as the left. Appreciate the strangeness of this 
movement form and the challenge of enacting it. How are you accomplishing this task? 
What sensory modality are you attending to? What are your criteria for maintaining 
the dynamical form? What have you figured out? We submit that learning to enact 
movement forms is where meaning is potentiated for mathematical concepts. Still, 
what exactly is the role of perception in performing this bimanual movement? Why do 
developmental psychologists and enactivist philosophers implicate our natural 
perceptual faculty as soliciting the mental construction of new cognitive structures 
from recurrent sensorimotor behavior? And how could doing all this become 
mathematics? 

Empirical research in the movement sciences has demonstrated that the human 
capacity to enact challenging bimanual movements, such as lifting the hands at 
different speeds, is achieved by developing new perceptual orientations towards the 
activity situation (Mechsner, 2004). In the absence of appropriate perceptual 
orientation, a task may appear daunting, even insurmountable, and yet once the 
perceptual orientation has been established — through exploration, guidance, or some 
mix thereof — the impossible task becomes manageable. What more, one is often able 
to articulate how one is orienting perceptually toward a situation, such as when we 

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 8
5.

22
0.

17
.2

51
 o

n 
07

/1
2/

24
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



01  Embodied Design: Bringing Forth Mathematical Perceptions 5 

teach a novice how to parallel-park, flip an omelet, or finesse a crochet stitch. Teachers 
are particularly good at explicating their expertise (Newell and Ranganathan, 2010; 
Shulman, 1986), and doing so often involves highlighting for the novice within a 
shared situation certain embedded forms that the expert discerns but the novice does 
not (Flood et al, 2020; Goodwin, 1994).  

A given bimanual movement form may be perceptually guided in a variety of ways. 
For example, to raise your hands at different speeds, you might attend to the vertical 
spatial gap between the hands and keep increasing that gap; you might ensure that the 
right hand is always double as high above the surface as the left hand; or that the left 
hand is always half as high as the right; and so on. That is, the phenomenology of 
performing a bimanual movement form may vary, and each variation instantiates a 
different mathematical model of the movement form. Calling movement forms 
“polysemous,” Abrahamson et al. (2014) demonstrated that coordinating among these 
models may lend new conceptual insight. 

Note the ontological difference between the movement form as described by a 
third person, for example, “Dor is raising his hands such that his right hand is moving 
twice as fast as his left hand,” and the individual’s first-person experience, for example, 
“The vertical gap between my lower left hand and my upper right hand should always 
be equal to the height of my left hand over the surface.” Embodied designers are 
interested in foregrounding the first-person experience — soliciting, characterizing, 
and documenting its variability across students — because we believe that talking and 
gesturing about these experiences can improve both research and practice 
(Abrahamson et al., 2022). 

Embodied design begins from our species’ universal capacities for thriving in 
natural and cultural ecologies. Being the biological organisms that we are, we are 
evolutionarily inclined to solve the existential problem of learning to perform new 
movements, whether walking, waltzing, or weaving, by discovering task-effective 
sensorimotor patterns — the how of attending to a situation. This natural neural 
proclivity to develop new perceptual orientation toward the environment as a means of 
operating on it can be solicited in fields of promoted action (Reed and Bril, 1996), 
social interventions that foster the development of culturally valued movement forms. 
Once novices figure out how to move in a new way, they can be encouraged to 
verbalize how they are perceiving the situation, which, under appropriate pedagogical 
settings, may lead to normative disciplinary discourse, including performing various 
inscriptional routines. Thus, cognitive structures that enable perception to guide action 
emerge as ontologies grounding mathematical concepts. It is in this sense that 
embodied design enables students to construct mathematical meaning from perception. 

Having explained the rationale and theoretical underpinnings of embodied design, 
we now turn to discussing findings from research studies that evaluated activities built 
according to the framework. At the center of these activities is a type of pedagogical 
interaction architecture called the Mathematics Imagery Trainer. 
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6 Dor Abrahamson 

2. The Mathematics Imagery Trainer

2.1.    Rationale and build 

The Mathematics Imagery Trainer (hence, the Trainer) is an activity architecture 
designed to serve as an instrumented field of promoted action (Abrahamson and 
Trninic, 2015) — a technological apparatus for administering embodied-interaction 
activities, in which students learn to participate in the physical enactment of an 
epistemic practice. Students are invited to solve a motor-control problem, where they 
manipulate virtual objects in an attempt to change the state of the environment, for 
example to cause a red screen to become green and then stay green as they keep moving 
the objects. That is, students learn to move in a particular way that is coded into the 
Trainer’s digital feedback regimen, for example to lift their hands at the speed ratio of 
1:2, where the right hand rises double as fast as the left (see Fig. 1). Learning to move 
in this new dynamical form is challenging, because the feedback regimen frustrates 
students’ existing repertory of sensorimotor schemes for interacting with the 
environment. For example, they may try to raise their hands at the same speed, only to 
be repeatedly countenanced (red screen), so that they must readjust their hands’ 
positions. To assimilate the feedback regimen of the obdurate environment, students 
must accommodate their schemes (Abrahamson et al., 2016). They learn to move in a 
new way — an ecologically coupled way (Abrahamson and Sánchez–García, 2016). 

The new movement forms that students learn to perform have been designed as 
“conceptual micro-choreographies” (Abrahamson and Sánchez–García, 2016), in the 
sense that these dynamic forms bear semiotic potential (Bussi and Mariotti, 2008) to 
become mathematically meaningful through quantitative modeling. The semiotic 

Fig. 1.  The Mathematics Imagery Trainer for Proportion set at 1:2. A child is 
manipulating two virtual objects. The right-hand object is twice as high above the 

bottom of the screen as compared to the left object. This spatial configuration of the 
two objects relative to each other satisfies the task of making the screen green. To 
move her hands in constant green, the child would need to keep this ratio. She will 

learn to move in a new way by attending to a new information structure. 
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consolidation of movement as mathematics is then ushered by making available to 
students a variety of symbolic artifacts (Sfard, 2002), such as a grid of lines laminated 
onto the activity space (see Fig. 2). Students recognize in these new resources potential 
instruments for enhancing the enactment, explanation, or evaluation of their effective 
movement strategy. Consider students who’d been raising the two virtual objects 
simultaneously while attending to the vertical gap between the objects (Fig. 2b). They 
say, “The higher the hands go, the bigger the distance between them” (Abrahamson et 
al., 2011). When the grid is flashed onto the screen (Fig. 2c), the students initially 
attempt to replicate this same strategy for enacting the movement form that had been 
satisfying the task conditions. Yet, as they raise their hands now, a horizontal line 
affords a convenient specified location to “park” one of the virtual objects, while the 
other hand searches for its complementary location that makes the screen green. As 
such, the sensorimotor pattern that had solved the motor-control problem of making 
the screen green becomes distributed over the environment, so that the students find 
themselves drawn into a new sensorimotor pattern, where the hands are moving 
sequentially, ratcheting up the lines. They say, “For every 1 line I go up on the left, I 
go up 2 lines on the right” (Abrahamson et al., 2011). Thus, as they engage the utilities 
that they discern in the new accessories to improve their grip on the world, students 
transition into enacting new movement forms that incorporate the symbolic artifacts. 
In so doing, the students appropriate quantitative frames of reference, so that their 
utterance takes on the linguistic forms of normative disciplinary discourse 
(Abrahamson and Bakker, 2016). 

2.2.    Attentional anchors 

How does an invisible spatial interval between two virtual objects suddenly avail itself 
as a perceptual means of managing a challenging motor-control task? The embodied-

Fig. 2.  From movement to mathematics — interpolating symbolic artifacts into students’ 
activity space brings about transitions in acting, thinking, and speaking: (a) when the screen 
shows no virtual objects, students focus on their hands; (b) introducing virtual objects draw 

students’ attention to the screen, where they explore for movement forms that sustain the 
favorable feedback; (c) supplementing a grid changes the activity space from continuous to 

discrete — students incorporate the lines as a frame of reference and develop a unitized 
movement form; and (d) further supplementing numerals solicits students’ arithmetic skills, 
enabling them to calculate and predict right–left locations satisfying the feedback regimen. 
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8  Dor Abrahamson 

design learning process depends on this intriguing perceptual phenomenon — if 
students didn’t “mind the gap” between the objects, they could not develop a new 
cognitive structure that would enable them to enact the movement form that solves the 
problem; they could not articulate their solution; and they could not then transition to 
mathematical models. Yet how should we theorize this figment of perception for 
coordinating the motor actions of two independent limbs? 

It turns out from Movement Sciences that: (a) the sensory and motor faculties are 
neurally intertwined and mutually constraining — we constantly grope for a better grip 
on the world by moving to sense, sensing to move (Fiebelkorn and Kastner, 2019); 
(b) sensorimotor activity is a complex system in flux, with new dynamic stabilities 
self-organizing adaptively to changing environmental contingencies (Chow et al., 2007; 
Kostrubiec et al., 2012); and (c) the mind relentlessly yet tacitly searches for, and 
generates new Gestalt structures to serve as perceptual means of organizing dexterous 
manipulation (Mechsner, 2004). That is, we are evolutionarily inclined to complement 
our raw sensation of the phenomenal world with imaginary auxiliary constructions 
that facilitate its manipulation. These Gestalts are the cognitive structures that emerge 
by and for task-driven, explorative actions, enabling action to be perceptually guided. 

Enactivist philosophers call these emergent cognitive resources attentional anchors. 
Attentional anchors are perceptual orientations toward the environment that come forth 
through exploration and guidance as our means of accomplishing the sensorimotor 
enactment of complex movement forms (Hutto and Sánchez–García, 2015). 
Attentional anchors are information structures that we groom forth from the lived 
environment as affording our task-effective action; once detected, we thereafter 
iteratively adjust our actions to maintain our perceptual hold of those structures that, 
reflexively, enable us to act on the world (Abrahamson and Sánchez–García, 2016). 

The very type of emergent structures that let us ride a bicycle, pole-vault, juggle 
props, or play a viola arpeggio could serve us in getting a grip on mathematics 
(Abrahamson, 2021; Hutto, 2019), albeit it takes an appropriate learning environment 
(Abrahamson and Sánchez–García, 2016; Hutto et al., 2015). It is thus, we believe, that 
theories of embodied cognition may inform the practice of mathematics education 
(Fugate et al., 2019; Shapiro and Stolz, 2019). We now take a closer look at practice. 

2.3.    Learning with the Trainer: from movement to mathematics 

Drawing on research conducted by Utrecht University researchers of embodied design 
(Bongers, 2020; Bongers et al., 2018; Duijzer et al., 2017), this section elaborates on 
Trainer learning trajectories. 

The activity begins by presenting the student with a bimanual motor-control 
problem. Here the student is working on an Orthogonal Proportion task. She is guided to 
manipulate the orthogonal dimensions of a rectangle, which initially is red (see Fig. 3a): 
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Her left-hand (LH) index finger slides the rectangle’s top-left vertex up/down along 
the y-axis to change its height, and her right-hand (RH) index finger slides the 
rectangle’s bottom-right vertex right/left along the x-axis to change its width. The 
student is tasked first to make the rectangle green and, once that is accomplished, to 
keep moving the two vertices at the same time whilst keeping the rectangle green. The 
rectangle is green when the quotient of its height/width measured values is some yet-
unknown constant number, for example 5 (see Fig. 3b). As such, once a green rectangle 
is generated, moving forward its dimensions must be adjusted simultaneously to 
maintain the rectangle continuously in its particular preset green aspect ratio. 

In the course of solving Orthogonal Proportion problems, study participants 
typically develop some new Gestalt to coordinate moving their LH–RH fingers 
simultaneously at different rates along orthogonal paths. For example, Lars (see Fig. 
4a) worked on a variant problem, where he was tasked to move cursors along 
orthogonal axes in the absence of a rectangle. When Lars achieved fluent movement 
in green, he was asked to explain his method. Lars said he was attending to an 
imaginary diagonal line connecting the cursors. The color blots in the images are post-
production data-visualization overlays marking the location of Lars’s foveal eye gaze. 
Soon after (see Fig. 4b), Lars demonstrated how he moves the diagonal line to the right.  

Fig. 3a. A Mathematics Imagery Trainer 
tablet activity. Initially, the manipulated 

geometrical figure, a rectangle, is colored 
red, because its selected dimensions do not 

comply with the yet-unknown specifications. 

Fig. 3b. Reconfigured at a 1:2 height-
to-width ratio, the rectangle turns green. 

Next, both hands must move 
simultaneously to keep the rectangle 
green while changing its dimensions. 

Fig. 4a. Lars, a 14 years-old low-tracked prevocational-education student, gestures an imaginary 
diagonal line he perceives as connecting his LH and RH points of contact on the axes. 

Fig. 4b. Lars uses his emergent attentional anchor to guide proportional bimanual 
coordination: He moves sideways the imaginary diagonal subtended between his fingertips. 
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10  Dor Abrahamson 

The eye-gaze markers indicate that he is no longer foveating on his fingers but, 
rather, near the center of the LH–RH diagonal lines. As you scan the five photographs 
in Figure 4b, note the successive locations of the eye-gaze marker: Curiously, Lars’s 
gaze path, as he imagines the successive LH–RH diagonals, runs along a different 
diagonal line — a diagonal trajectory from the origin (on the bottom left) and up to the 
right that describes a y = .5x function. This emergent foveal trajectory is a secondary 
attentional anchor. Lars’s diagonal solution was quite typical. Yet, across participants, 
we found evidence for a variety of attentional anchors, such as gazing at the imaginary 
top-right corner closing a rectangle composed of two axial segments subtending 
between each fingertip and the origin and two lines from the fingertips to the imaginary 
point (see Duijzer et al., 2017, for the array of attentional anchors recurring across 
participants). 

Once students have achieved a pre-specified criterion of minimal performance 
level, the activity proceeds with the teacher — who may be either a human or a virtual 
pedagogical avatar (Abdullah et al., 2017) — introducing onto the activity space 
supplementary resources designed to steer students to develop quantitative re-
articulations of their movement forms. For example, Fig. 5 shows the presentation of 
a grid (Fig. 5a) and then numbers (Fig. 5b) onto the tablet interface. 

Undirected, students count grid lines or units corresponding to their actions and, 
thus, are able to: (1) describe their strategy quantitatively; (2) draw on their arithmetic 
skills; (3) confirm the veracity of their strategy; (4) determine with greater precision 
the location and trajectory of the attentional anchor; (5) enact the movement form 
correctly independent of the color feedback; and (6) predict properties of yet-unenacted 
geometrical shapes satisfying the interaction regimen. 

Students are now equipped with quantitative rules derived from the tablet activity, 
so that, given a new “green” geometric shape, they are able to calculate a set of 
additional “green” shapes. The lesson activity now disengages from the tablet and turns 
to paper. Fig. 6 demonstrates a paper-and-pen activity, where the geometrical form 
presented to the students “materializes” the imaginary diagonal attentional anchor, 

Fig. 5a. A grid is overlaid onto the 
movement space. The continuous space thus 
becomes discrete, affording the enumerative 
quantification of, and reference to uniform 

spatial intervals. 

Fig. 5b. Numerals are supplemented onto 
the grid. Strategies of iterative manual 

incrementation are substituted by explicit 
arithmetic functions enabling multiplicative 

prediction of green rectangles. 
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01  Embodied Design: Bringing Forth Mathematical Perceptions 11 

which they had generated imaginatively on the tablet as their means of solving the 
tablet interaction problem of moving in green. Students are asked to use the pen to 
show what would be other “green” triangles. As students engage the paper-and-pen 
offline tasks (see Fig. 6a), they no longer have recourse to immediate real-time 
interactive feedback on the quality of their performance. Nevertheless, the students 
now have a formalized rule for generating additional instances of the new equivalence 
class, which has yet to receive a mathematical name. Figures 6b–d demonstrate 
students’ creative technical strategies, using available resources, for creating new lines 
running between the y-axis and x-axis parallel to the hypotenuse of the given triangle. 

In Fig. 7, Bongers et al. (2018) deftly illustrate the study participants’ typical 
quantitative strategies for generating further “green” diagonals on paper. Both the with 
the virtual grid. With that, the tablet-based perceptual strategy of handling animaginary 
Gestalt has materialized as a paper-based geometrical strategy of generating a set of 
“green” diagonals. The lines’ mutual affinity — what makes them satisfy the tablet-
based task. Yet, now on paper, the lines’ setness in turn draws also on new perceptual 
criteria — their salient parallelism and the similitude of the triangles they configure. 

Fig. 7a. A participant gauges 
a vertical span, transports it 

upwards to form an 
equivalent concatenated 

span, and marks its reach. 

Fig. 7b. The 
participant next 

performs analogous 
actions along the 
horizontal span. 

Fig. 7c. The participant draws 
units alongside the triangle 
legs, then extends 3 and 2 

units, respectively, along the 
vertical and horizontal legs. 

Fig 6a. A sheet of 
paper showing a 
starter shape is 

placed directly on 
the tablet screen. 

Fig. 6b. Anna places 
an available sheet of 
paper alongside the 

triangle’s 
hypotenuse. 

Fig. 6c. Anna 
slowly slides the 

page away, 
keeping it parallel 
to the hypotenuse. 

Fig. 6d. Using the 
sheet of paper as 
a straightedge, 
Anna draws a 
parallel line. 
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12 Dor Abrahamson 

A set of triangles thus produced through rule-base iterated co-expansion of the legs 
(e.g., 3-per-2 in Fig. 7) is named as bearing the mathematical quality of 
“proportionality.” 

With that, we have demonstrated the evolution of a mathematical concept 
grounded in an attentional anchor: (1) from a personally experienced ad hoc 
imaginary percept that emerges spontaneously to organize the sensorimotor 
enactment of a movement solution in an assigned motor-control problem; through 
guided discourse, (2) into a publicly evoked qualitative ontology in the form of co-
speech hand gestures adumbrating the imaginary line for the interlocutor; then 
becoming (3) a quantitative ontology pinned onto a frame of reference that enhances 
performance, calculation, and prediction; next, denoted (4) as the contour of a sheet of 
paper that indexes the prospective location and form of a linear inscription; and then 
materialized (5) as an actually inscribed line on paper, along with diagrammatic and 
symbolic labels and multimodal quantitative explanations for the diachronic and 
contextual meanings of this line. As such, we wish to detail the cascade of semiotic 
actions by which subjectively experienced perceptual structures that come forth to 
facilitate motor action are endorsed into mathematical discourse that imbues and 
articulates the structures with conceptual meaning by implicating their quantitative 
invariance. 

3. Closing Words

The embodied-design research program speculates that “If you can’t move it, you don’t 
get it.” That is, one’s understanding of a mathematical concept begins at the point 
where one can enact a movement form that, per experts, instantiates the concept. Yet 
to enact a new movement form, one must attend in a new way to the environment, 
including one’s body. That is, to perform a conceptual choreography, we must detect 
in the environment an information structure whose maintenance facilitates, enhances, 
and regulates our grip on the world (Abrahamson, 2021; Abrahamson and Sánchez–
García, 2016). In turn, our mimetic capacity to reflect on our own actions (Donald, 
1991; Piaget, 1971) enables us to surface these tacit forms in multimodal language and 
formalized inscription (Donald, 2010; Malafouris, 2013). The Mathematics Imagery 
Trainer constitutes an instrumented field of promoted action guiding this micro-genesis 
of movement into mathematics. 

Trainer studies have generated empirical data enabling researchers to investigate, 
corroborate, and extend with unprecedented precision longstanding tentative tenets 
from seminal theories of cognitive development, including Varela’s enactivist 
cognition (Hutto et al., 2015), Piaget’s reflecting abstraction (Abrahamson et al., 2016), 
Vygotsky’s zone of proximal development (Shvarts and Abrahamson, 2019), Araújo’s 
ecological dynamics (Abrahamson and Sánchez–García, 2016), and Vérillon and 
Rabardel’s instrumented activity theory (Shvarts et al., 2021). Quantitative analyses of 
students’ motor and sensory activity have enabled the research collaboration to pioneer 
the demonstration of conceptual phenomenology as perceptual assembly of 
sensorimotor behavior (Abdu et al., 2023; Tancredi et al., 2021). 
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01  Embodied Design: Bringing Forth Mathematical Perceptions 13

Embodied-design activity architectures are “pan-media,” in the sense that they can 
be implemented in a range of human — computer interaction platforms. As such, the 
Trainer can cater to students of diverse sensory capacities and needs. For example, 
Trainers have been built for sighted students’ remote-action (Howison et al., 2011) or 
hands-on tablet manipulation (Abrahamson et al., 2011) yet also for enhanced 
accessibility (PhET, 2021), including haptic devices for students who are blind or 
visually impaired (Lambert et al., 2022). 

As we enter the systemic era in theorizing mathematics education (Abrahamson, 
2015), we foresee increasing adoption of constructs and methods from dynamic 
systems theory. The Mathematics Imagery Trainer, while supporting student 
development of deep conceptual understanding, could furnish the empirical context for 
investigating the pivotal epistemic role of learning to move in new ways. 
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