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Enactivist Learning: Grounding Mathematics Concepts in 

Emergent Perception for Action 
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ABSTRACT. Harnad’s symbol-grounding problem launches a quest to found a new 
Learning Sciences paradigm innovating and evaluating pedagogical resources that 
enable students to develop meaning for mathematical concepts. A proposed paradigm, 
embodied design, integrates design-based research efforts to innovate interactive 
resources, facilitation methodologies, multimodal learning analytics, and empirical 
findings all resonant with Varela’s enactivist tenets of cognitive epigenesis. These 
tenets, we argue, readily inform a heuristic design framework, which we then exemplify 
with the Mathematics Imagery Trainer, an interactive technological architecture that 
occasions opportunities for students to develop new conceptual choreographies 
grounding curricular content. Solving motor-control problems, students first discover 
attentional anchors, dynamic perceptual structures mediating task-effective 
coordinated action; they then use available mathematical instruments as frames of 
action and reference to enhance the enactment, evaluation, and explanation of these 
solution strategies, thus shifting into disciplinary discourse, where the attentional 
anchor serves as a percept-to-concept pivot—from doing to thinking-about-doing. With 
its emphasis on learning through sensorimotor exploration, embodied design caters to 
mathematical practice inclusive of students with sensory, motor, and cultural 
differences. 

Keywords: Constructivism, Embodied design, Embodiment, Enactivism, Field of 
promoted action, Mathematics education, Mathematics Imagery Trainer, Perception, 
Sensorimotor, Symbol-grounding. 

RÉSUMÉ. Apprentissage énactif : ancrer les concepts mathématiques à travers 
l'émergence d'une perception qui guide l'action. Le problème de l’ancrage des 
symboles posé par Harnad initie la quête d’un renouvellement paradigmatique dans le 
domaine des Learning Sciences afin de permettre la conception et l’évaluation de 
ressources et dispositifs pédagogiques qui permettent de donner du sens aux concepts 
mathématiques. Une de ces alternatives paradigmatiques, la conception « incarnée », se 
fonde sur des recherches orientées par la conception pour innover dans le 
développement de ressources interactives, de méthodes de facilitation et 
d’accompagnement, d’analyses multimodales des apprentissages, et de résultats 
empiriques, tous cohérents avec les principes de l’enaction développés par Varela. Nous 
soutenons que ces principes peuvent informer de manière heuristique et féconde la 
conception. Nous illustrerons notre propos à l’aide d’un dispositif technologique et 
interactif pour l’enseignement des mathématiques, the Mathematics Imagery Trainer, 
conçu dans la perspective d’offrir aux étudiants des opportunités pour développer de 
nouvelles formes de chorégraphies conceptuelles permettant d’ancrer les contenus 
enseignés. En résolvant des défis basés sur des tâches motrices, les élèves découvrent 
d'abord des ancres attentionnelles, des structures perceptuelles dynamiques médiatrices 
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d’actions coordonnées en vue d’une réalisation efficace de la tâche ; ils utilisent ensuite 
les instruments mathématiques disponibles comme cadres d'action et comme référence 
pour améliorer la mise en œuvre, l'évaluation et la justification de ces stratégies, passant 
ainsi dans l’univers disciplinaire, l’ancre attentionnelle ayant un rôle de pivot dans le 
passage de la perception au concept – du faire à la réflexion sur le faire. En mettant 
l’accent sur l’apprentissage par des explorations sensori-motrices, la conception 
incarnée favorise une pratique des mathématiques inclusive permettant d’accueillir des 
élèves présentant des différences sensorielles, motrices, ou culturelles. 

Mots-clés : Constructivisme, conception « incarnée », dimension incorporée, 
énactivisme, espace d’actions encouragées, didactique des mathématiques, dispositif de 
formation à l’imagerie mathématique, perception, sensori-moteur, ancrage des 
symboles. 

OVERVIEW 

Situating a Discussion of Mathematical Meaning in the Embodied 
Design Research Paradigm 

Varela et al. (1991) state the following: 

“In a nutshell, the enactive approach consists of two points: (1) 
perception consists in perceptually guided action; and (2) 
cognitive structures emerge from the recurrent sensorimotor 
patterns that enable action to be perceptually guided.” (pp. 172–
173) 

If, indeed, cognitive structures emerge from recurrent sensorimotor patterns 
that enable action to be perceptually guided, then that should necessarily include 
also the neural substrates of mathematical reasoning. At first blush, one might 
gape at a theoretical proposal that mathematical concepts, which folk 
psychology labels as “abstract”, could possibly emanate from the biologically 
rudimentary activity of sensorimotor exploration. As such, one would rightfully 
wonder what mathematics education could possibly look like that adhered to 
these enactivist principles. How might these principles guide the creation and 
facilitation of educational activities that lead to mathematical understanding? 
And what would a research program look like that evaluated a proposed design 
for enactivist mathematics teaching and learning? How could we monitor and 
measure whether the would-be cognitive structures have emerged? And how 
would these presymbolic neural substrates give rise to conscious reflection, 
professional discourse, and the production of formal semiotic artifacts, such as 
numbers, tables, and graphs? 

The Embodied Design Research Laboratory’s long-term design-based 
research program evaluates whether and how enactivist epistemology can serve 
as a heuristic framework guiding the creation of pedagogical resources for 
grounded enculturation into K–16 curricular concepts. Accordingly, we create 
learning environments where novices figure out how to move—ergo, how to 
perceive and think—in new ways that occasion opportunities for guided 
appropriation of disciplinary discourse. 

EDRL’s activities engage participants in solving motor-control problems, 
such as performing complex bimanual manipulations of virtual artifacts to 
generate designated feedback. Specific movement forms that solve the problems 
have been pre-designed to instantiate the new concepts as dynamical 



Enactivist Mathematics Learning  151 

-  D o s s i e r  -  

conservations. For example, moving both hands simultaneously, traversing 
proportionate accumulations, along orthogonal trajectories, is conjectured to 
foster proportionate reasoning. 

EDRL’s mixed methods triangulate multimodal learning analytics, that apply 
dynamic-systems-theory quantitative gauges of manual–visual coordination, 
with micro-genetic ethnographic and ethnomethodological analysis of verbal–
gestural conversational utterance and artifact generation. 

EDRL’s findings evidence that study participants spontaneously develop 
new attentional anchors—perceptual orientations toward the problem 
situations—as their means of coordinating sensorimotor enactments of solution 
movements. In turn, these emergent perceptual orientations, often comprising 
imaginary auxiliary structure, are reified via available semiotic forms, including 
mathematical instruments and language, into stable indexable entities—
consciously accessible ontologies that students describe, represent, measure, 
symbolize, and calculate. 

There are now embodied designs for a variety of mathematical concepts, 
including mechatronic devices for sensomotorically diverse students. Case-
study analyses of enactivist tutorials offer guidelines for educating mathematical 
perception by cueing attentional anchors or otherwise steering their discovery. 
As such, we empirically corroborate the enactivist hypothesis, elaborate its 
micro-process, and explicate its instructional application. 

This paper explains the philosophical and theoretical motivation of our 
design-based research into the enactive roots of mathematical concepts. We offer 
the reader a case-study walk-through of how we implement enactivist tenets as 
heuristic design guidelines in building and evaluating interactive platforms 
where students learn to move, perceive, and think in new ways. 

1 – INTRODUCTION 

Welcome to Pirézia: The Problem of Meaningless Mathematics 

You land in Pirézia national airport.1 For argument’s sake, let’s assume here 
that you don’t speak or read Pirézian. You want to collect your luggage, so you 
look for overhead signs telling you where the carousels are. There are many 
brightly lit signs, and they are all written only in Pirézian. Confused, you wander 
over to the information desk. The receptionists are most polite, but they only 
speak Pirézian. Instead, they hand you a dictionary. Relieved, you open the 
dictionary. You look up at one of the signs and stare at what appears to be the 
key word. This word is a string of unfamiliar symbols. You flip through the 
dictionary, back and forth, and eventually you locate that word as an entry. 
Progress! Ok, you try to read the translation of the word. Alas, it is not a 
translation. It is a definition of the word in Pirézian. Hmm, sure, …right. No 
problem. Undaunted, you look up those Pirézian words, from that definition, in 
the same dictionary, only to find that their entries, too, …are in Pirézian. And so 
forth. I think you get it. The dictionary appears to be an intact yet perfectly closed 
system. It is impervious to you. You are familiar with the dictionary as a 

                                                 
1 Readers may be challenged to locate this country on Google Maps. May we, instead, recommend 
Wikipedia? 
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common artifact, you recognize its structure and logic, and you can follow its 
inter-referring web of signs. And yet the actual meanings of these signs are never 
revealed to you. Meaning is elsewhere. Bon voyage. 

My Pirézian exordium paraphrases on Harnad (1990), an experimental 
psychologist who offered this hypothetical situation as a parable for what he 
calls the “symbol-grounding problem.” The meanings of symbols, argues 
Harnad, are not inherent to the symbols themselves nor to the system of symbols. 
Rather, when we experience symbols as meaningful, it is because these symbols 
evoke particular non-symbolic cognitive resources, primarily sensory 
impressions. 

Well, we’ve covered the case of luggage and language, but what does all this 
imply for something else, perhaps something we need to learn? How about 
mathematics? Where or what on earth are the meanings of “2+3”? Or, just, what 
does the “+” mean? As you behold “+”, how do you make sense of it? How do 
you grasp it? How do you be-hold it?... Per Harnad, what non-symbolic cognitive 
resources do you tacitly bring to bear in making sense of “+”? Perhaps, upon 
introspection, you realize that “+” conjures for you a subtle perception of 
cumulation, that is, an inner gesture of “adding stuff.” If so, can you demonstrate 
to me what “adding stuff” means, but without using any words? Would you, 
perhaps, draw your hands toward each other in an overt, covert, or even 
imaginary motor performance? Because, if so, then that nuanced “adding stuff” 
schema is your symbol-grounding for “+”. It is your dynamic concept image (cf. 
Tall & Vinner, 1981; see Abrahamson et al., 2014, pp. 79–80). 

Knowledge, then, is not in language itself. Piaget (1970), predating Harnad, 
concurs: 

“ [L]e point de départ de ces constructions [logico-
mathématiques], au plan du comportement, n’est pas le langage, 
mais qu’aux niveaux sensori-moteurs on en trouve les racines 
dans les coordinations générales des actions (ordre, 
emboîtements, correspondances, etc.).” (p. 73–74)2 

And yet, the show-me pragmatists among our readers may judiciously 
inquire, what could all this philosophy and theory mean for teaching and learning 
mathematics? Indeed, one might remonstrate that, but of course, scholars of 
education have forever known that meanings are not in symbols—we’ve known 
this at least going back to Jean-Jacques Rousseau, Friedrich Fröbel, Maria 
Montessori, and their likes. As Émile’s tutor emphatically adjured us three 
centuries ago: 

“Pourquoi toutes ces représentations ? que ne commencez-vous 
par lui montrer l’objet même, afin qu’il sache au moins de quoi 
vous lui parlez ! …. En général, ne substituez jamais le signe à 
la chose que quand il vous est impossible de la montrer ; car le 

                                                 
2 For non-native speakers of Pirézian: “[T]he formation of logical and mathematical structures in human 

thinking cannot be explained by language alone, but has its roots in the general coordination of actions.” 
(Piaget, 1971, p. 19) 
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signe absorbe l’attention de l’enfant et lui fait oublier la chose 
représentée.”3 

Alors, it turns out that the idea of grounding a symbol in l’objet même has 
featured in educational discourse for quite a while now. Dommage, though, this 
historical pedagogical heuristic is not at all obvious to today’s scholars of 
mathematics education. Consider Thompson’s apologia. 

Thompson (2013) tells us a poignant story about visiting a US classroom, 
where youth were studying the geometrical concept of an angle. That day, the 
students were learning to use a protractor to measure an angle, which they would 
then write down on their worksheets. His conversations with the students led 
Thompson to realize that they did not have any idea what an angle actually is. 
To be sure, the diligent students were most adept at determining angle measures 
using the protractor instrument, and yet they could not begin to explain to 
Thompson the meaning of these measures. Not a single student (nor the teacher, 
alas, for that matter) understood the angle measure as quantifying the ratio 
between the angle aperture and the full circle, for example, that the meaning of 
“40°” is derived from 40/360, where 360 is an historical convention, and 
therefore “40°” means that the angle arms (rays) are 1/9 -of-a-circle open. The 
students only had what Skemp (1976) called “instrumental knowledge” about 
angles, no “relational knowledge.” Thinking back to our earlier example of “+” 
and the cumulation gesture, the students didn’t have any analog gesture to 
express what the protractor was measuring (cf. Hardison, 2019). Thompson then 
candidly reflects back on decades of research in the late 20th century, when he 
and his colleagues believed that children learn a mathematical concept by 
translating across its inter-signifying semiotic displays, for example, among an 
equation of a linear function, its graphical display, and its tabular embodiment. 
Yet now, Thompson realizes that, 

“Tables, graphs, and expressions might be multiple 
representations of functions to us, but I have seen no evidence 
that they are multiple representations of anything to students. In 
fact, I am now unconvinced that they are multiple 
representations even to us…. I am now saying that I was 
mistaken. …. [I]t may be wrongheaded to focus on graphs, 
expressions, or tables as representations of function, but instead 
focus on them as representations of something that, from the 
students’ perspective, is representable, such as some aspect of a 
specific situation. The key issue then becomes twofold: (1) To 
find situations that are sufficiently propitious for engendering 
multitudes of representational activity and (2) Orient students to 
draw connections among their representational activities in 
regard to the situation that engendered them.” (pp 39–40, my 
emphasis) 

Eh bien, centuries after Rousseau’s l’objet même, we’re still looking for 
something—we’re still living in Pirézia! How can this be? Where has the wisdom 

                                                 
3 “What is the use of all these symbols; why not begin by showing him the real thing so that he may at 

least know what you are talking about? .... As a general rule—never substitute the symbol for the thing 

signified, unless it is impossible to show the thing itself; for the child’s attention is so taken up with the 
symbol that he will forget what it signifies.” (Rousseau, [1762], p. 170) 
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of Enlightenment gone? Perhaps the chastising ghost of Nicolas Bourbaki4 still 
quietly stirs doubt among those who would hope for students to ground the 
meaning of symbols in sensorimotor experience. Perhaps some of us believe, 
like Piaget, that once children have mastered basic sensorimotor skills and 
reached the proverbial formal operational stage of cognitive development, they 
no longer avail of physical interaction for learning new logico-mathematical 
concepts. Then again, perhaps we do believe that new mathematical concepts 
call for new sensorimotor experiences, only that we haven’t figured out what the 
sensorimotor experience should be for certain mathematical concepts, for 
example an angle, proportionality, or an asymptote. Perhaps, furthermore, we do 
appreciate that mathematical ideas should be grounded in sensorimotor 
experience and we even have figured out what these sensorimotor should be, 
and yet we just don’t know how to foster such sensorimotor experience, and so 
we give up. Que faire ? 

An objective of this paper is to evaluate whether technology—writ large, to 
include mechanical, electronic, and mechatronic interactive devices—can help 
us escape Pirézia to a land where we might ground mathematical symbols in 
sensorimotor experiences. One premise of our escape from Pirézia is to heed the 
wry comment quipped by Glenberg (2006) in his Commentary on the future of 
educational technology: 

“[O]ne can view most of my reasons for skepticism as 
challenges for the future development of technology that is 
sensitive to the principles of biological cognitive systems.” 
(p. 271) 

More broadly, by looking to understand and harness “biological cognitive 
systems” we join Dreyfus and Dreyfus (1999), who, in their essay on French 
Phenomenology philosopher Maurice Merleau–Ponty, express their frustration 
with prevalent Cartesian paradigms in the cognitive sciences: 

“Until cognitive scientists recognize [the] essential role of the 
body, their work will remain a mixed bag of ad hoc successes 
and, to them, incomprehensible failures.” (p. 118) 

In the next section, we will be examining just what these “biological 
cognitive systems” might be that technology should accommodate if we are to 
avoid “incomprehensible failures” in creating learning environments where 
students ground mathematical symbols. But we want to go beyond articulating 
theory and deriving design principles by actually practicing design and 
conducting empirical studies. That is, we are looking to evaluate whether 
theories of biological cognitive systems that incorporate the body in explaining 
human learning, teaching, and thinking can be applied by way of creating novel 
activities for the betterment of mathematics pedagogy. In choosing to elaborate 
on philosophical and psychological scholarship through designing and 
evaluating instructional resources, we are inspired by Clements and Sarama 

                                                 
4 Bourbaki is the collective name of a team of mostly-French mathematicians. Founded in the early 

1930’s, Bourbaki aimed to purge the mathematical discipline of any ontological grounding in human 
sensory experience, including spatial–temporal media, modes, and modalities. This movement was 

notoriously influential in the United States, where Bourbaki’s tenets were instantiated in the form of a 

nation-wide failed pedagogical approach known as “New Math” that required young children to disavow 
their early number sense and, instead, meaninglessly manipulate meaningless formal symbols. 
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(2015), whose Commentary on a special issue centered on early mathematics 
education chastised the contributing authors for a lack of application: 

“Mathematics education should not be an “implication” tagged 
on to the end of studies from developmental and cognitive 
psychology. Mathematics education research and cognitive 
research should be interwoven enterprises.” (p. 251) 

Interweaving education research and cognitive research is the bread and 
butter, or perhaps even the meat and potatoes, of an investigative approach 
associated with the Learning Sciences, design-based research (Bakker, 2018; 
Collins, 1992; Easterday et al., 2016). In design-based research (sometimes 
named design research), investigations of educational phenomena are vested in 
cycles of assembling and appraising pedagogical methodology. Design-based 
research projects typically make contributions to the field by way of: (a) 
corroborating and refining theories of learning, teaching, and cognition in the 
sociocultural context; (b) generating and validating educational prototypes 
through evaluating them with end-users; and (c) developing heuristic design 
frameworks applicable in broader contexts (Abrahamson & Wilensky, 2007). 

This section has dialogued with Harnad’s stipulation that for symbols to 
make sense to us—or, rather, for us to make sense of symbols—the symbols 
must be grounded. And they must be grounded, we took from Rousseau, 
Dreyfus, Glenberg, Thompson, and others, through engaging our biological 
cognitive systems in embodied worldly interaction. At the same time, as Piaget 
and other cognitive developmental psychologists insist, the learning trajectory is 
not from the symbol to its grounding but, au contraire, from sensorimotor 
experience to the symbol, by way of semiotic mediation (Bartolini Bussi & 
Mariotti, 2008). And so, another premise of our attempted escape from Pirézia 
will be to examine whether philosophy of cognitive science offers guiding tenets 
for creating educational activities where students experience first, signify later 
(cf. Nathan, 2012). At the same time, we acknowledge and document the critical 
role of teachers—cultural agents—in facilitating students’ dialectic symbol-
grounding process (Flood, 2018).5 

The next section appreciates the philosophy and science of enactivism as a 
coherent intellectual source for guiding educational design-based research on 
mathematical cognition, teaching, and learning. A subsequent section will then 
demonstrate what such pragmatic application of enactivism to education could 
look like. We highlight that the proposed pedagogical methodology is an 
equitable educational practice that caters to intersectionally diverse students by 
including educational offerings for neurally and sensorially atypical children; as 
well as post-colonial restorative-justice participatory designs for Indigenous 
people of hetero-European linguistic epistemology. The paper ends with a 
summative symbol-grounding exercise. 

                                                 
5 Questioning the psychologically possible and pedagogically optimal directionality of symbol-

grounding—whether from a symbol to a sensorimotor experience or vice versa—becomes complexified 
from the perspective of dynamic systems theory. Some educational researchers view material and 

semiotic resources as functionally equivalent in simultaneously transforming students’ environment, 

where sensorimotor interactions lead to the development and stabilizations of new perceptions (Shvarts 
& Abrahamson, 2023). 
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2 – A SOLUTION: ENACTIVIST PHILOSOPHY OF MIND 

We’re still talking about meaning, the meaning of things, including symbol-
things. We began this article with a visit to Pirézia, where we worried about the 
absence of meaning. We diagnosed this absence of meaning as the problem of 
symbols that are not grounded in sensorimotor experience. We submitted that 
biological cognitive systems require sensorimotor experiences to develop 
meaning for signs, and we suggested that educational interventions might 
include technological artifacts that would occasion opportunities for students to 
develop sensorimotor grounds for mathematical symbols. We left open the 
question of how we might approach this task of creating educational activities 
for students to develop these sensorimotor capabilities. As design-based 
educational researchers, we have a sense of what we are looking for—what it 
should deliver—but we’re not yet quite sure what intellectual edifice could guide 
our educational development. Put simply, how do we get kids to move in new 
ways that would enable them understand some particular mathematical concept? 
Enter philosophy. 

Now we turn to a philosophical paradigm in the cognitive sciences concerned 
with the nature and origin of meaning. This epistemological theory, called 
enactivism, looks to explain how goal-oriented interactions between biological 
systems and their environment give rise to neurally sustained capacities—
cognitive structures—which mediate and regulate adaptive behaviors. For 
higher-order organisms, these cognitive structures may, in turn, become 
available for reflection, objectification, and semiotic expression—they may 
become things, new ontologies to think and talk about, that is, things by which 
both to articulate individual reasoning and, dialectically, regulate social 
mediation of shared perception to enable coordinated joint action, collaborative 
planning, mythology, etc.6 Things that lend meaning to symbols. 

The rationale and motivation of this section is to lay out the enactivist 
paradigm from philosophy in a way that I will then operationalize as an applied 
heuristic framework for building educational environments. These enactivist 
environments—what Reed and Bril (1996) might call fields of promoted action 
(see also Abrahamson & Trninic, 2015)—are designed to occasion opportunities 
for students initially to develop new cognitive structures facilitating their 
adaptive sensorimotor engagement with the environment (l’objet même) and 
only later—through the mediated appropriation of available semiotic artifacts—
come to realize that these cognitive structures ground what turns out to be a new 
mathematical concept. So, we’re in the business of designing activities for 
students to develop a grip on mathematics (Abrahamson, 2021; Hutto, 2019). As 
I put it elsewhere (Abrahamson, 2009), we construct means for constructing 
meaning. 

Talking about the meaning of mathematical symbols can be difficult. Let’s 
make our life easier by first talking about the meaning of material phenomena—

                                                 
6 See Donald (1991, 2001) for an archeo-anthropological account of mimesis, the evolved neurocognitive 
capacity for thinking about action. See Goodwin (1993), Schegloff (1997), and Mondada (2014) on the 

spontaneous emergence of ontologies as a social solution to maintaining conversational intelligibility 

supporting the coordination of action. See Radford (2014) on a semiotic–cultural theory of objectification 
as it plays out in mathematics education. 
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regular stuff we encounter in our everyday life. What are the meanings of things? 
It seems useful to surmise that meanings may not be absolute, that they are ad 
hoc. The meaning of something is what some person might think to do with it to 
get something done under some given circumstances. For example, the meaning 
of a banana could be a paperweight for holding down napkins onto your picnic 
table on a windy summer’s day in the verdant mountainous glades of South-East 
Pirézia. So, meaning is subjective, functional, tacit, and contextual, where 
features of the thing in question come forth as affording apparent utilities to get 
something done. And yet the meaning of things can become objective, explicit, 
universal, and generalized in cultural practice, once normative routines and 
discourse pertaining to the thing are collectively established. Perhaps the 
paperweight-ness of bananas will become a thing—enterprising Pirézians will 
create ornate little brass bananas as artisanal paperweights, to use when organic 
bananas are out of season, and they might compose verses extolling the artifact, 
depict it on their flag, sell it to Hungarian tourists in rustic gift stores, and so on. 

In this vein, the enactivist cognitive scientists Varela et al. (1991) are 
interested in how the stuff of new tacit meanings first coalesces, when an 
organism attempts to engage adaptively with its ecological environment to 
satisfy an existential need. To begin to understand the enactivist way of thinking, 
however, we must shift away from our everyday mode of thinking about 
things—a mode of thinking that is ineluctably vested in Western languages’ 
ontological parsing, syntactic positioning, and referential tokenizing (Barton, 
2008; Urton, 1997; Verran, 2001)—toward a pre-linguistic phenomenological 
immersion in the environment (Abram, 1996; Sheets-Johnstone, 1999; 
Petitmengin, 2007). In a sense, I’m asking you to stop thinking about thinking 
and just think, or, better, just be—be a human being—even as I recognize and 
apologize for the paradox of my request. 

For enactivists, such as Varela, and similar to ecological psychologists 
(Gibson, 1977; Heft, 1989), the fundamental ontological unit for understanding 
biological organisms’ ethological behaviors is neither the organism per se (the 
“subject”) nor the environment per se (the “object”) but always inherently an 
organism–environment atomistic relation—not a binary dualism but a monist 
duality, “the quality or state of having two commensurate (mutual and 
reciprocal) aspects” (Turvey, 2019, p. 327). This organism–environment 
originary duality is necessarily dynamic, action-prone, and perceptually 
governed—it is enactive, in the sense that organisms’ neurally potentiated 
capacity to behave functionally in their ecology is constituted only by virtue of 
it being carried out, whether actually, imaginatively, or some blend thereof. The 
being of knowing is in doing. As Piaget (1968) wrote, “il n’existe pas de 
structure sans une construction” (p. 120).7 As such, knowledge, or, better, the 

                                                 
7 “There is no structure apart from construction” (Piaget, 1970, p. 140). Turner (1973) elaborates on this 
idea. “‘Construction,’ or the process through which structures are formed, is thus the most important 

concept in Piaget’s theory of structure. Construction consists of an adaptive interaction between a system 

or entity already organized at some level, which plays the functional role of ‘subject,’ and its objective 
environment. The adaptive orientation of the ‘subject’ is toward the achievement of a more stable 

equilibrium within the total system constituted by itself and its environment. To achieve this goal, it must 

make a series of accommodations to the objective conditions imposed by its environment, and incorporate 
these accommodations into its own structure as the basis of its future behavior. The subject attempts to 
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phenomenology of knowing, is in the doing that instantiates this knowing. 
Whereas the capacity for knowledge is neurally potentiated, the experience of 
knowledge is necessarily in its situated application that may involve both natural 
phenomena and cultural artifacts, themselves fashioned so as to support our 
actions. 

Meaning, per enactivism, first rises through the biological organism’s 
ecologically adaptive perception–action loops that marshal new forms of goal-
oriented sensorimotor activity into functional systems. The enactivist manifesto 
states the following profound tenets: 

“In a nutshell, the enactive approach consists of two points: (1) 
perception consists in perceptually guided action and (2) 
cognitive structures emerge from the recurrent sensorimotor 
patterns that enable action to be perceptually guided.” (Varela 
et al., 1991, p. 173) 

The quotation, above, is a dense encapsulation of a rather complex theoretical 
model, which may be unintuitive to scholars trained in traditional epistemology. 
To unpack the enactivist theoretical model and begin to apply it to educational 
practice, let us attempt, in the next section, to explicate each of its key constructs 
as capturing the process of learning a mathematical concept and, as such, 
implicating how mathematics should be taught. That is, as a design-based 
researcher, I find it particularly useful to interpret an epistemological model by 
hypothesizing a process of learning in terms of how we would design an 
environment that implemented the model. In doing so, the design-based 
researcher asks: (1) What would an enactivist mathematics pedagogy look like?; 
and (2) What would a research program look like that evaluated whether the 
proposed pedagogy is indeed implementing the framing theory? The following 
section will explicate the enactivist motto by way of a design exemplification—
an enactivist design for fostering symbol-grounding.8 

3 – TOWARDS AN ENACTIVIST PEDAGOGY 

I am a design-based educational researcher bent on creating interactive 
digital resources for students to learn particular targeted concepts. For example, 
I may wish to create an interactive technological platform for young students to 
learn the mathematical concept of proportionality. As they engage in activities 
centered on these designed educational resources, students are to develop new 
cognitive structures. I think of these cognitive structures as constituting proto-
mathematical capacities conducive to grounding the particular mathematical 
notion in question.9 So, as I consider a design for proportion, I ask myself what 

                                                 
encompass each new set of accommodations on the basis of its capacity to ‘assimilate’ objective reality 

at its existing level of structural development” (p. 355). How to theorize this would-be pre-existence of 
some “objective reality” becomes a nettled point of debate that will not be expanded here. 
8 Focusing on the enactivist proposal as elaborated by Francisco Varela and his colleagues, this paper will 

not discuss a parallel branch of enactivism propounding Umberto Maturana’s emphases on the 
problematics of observation. See Drury and Tudor (2023) for an elegant historical exposition on the 

drifting apart of enactivist schools, which they characterize as Maturana’s “autopoietic enactivism” and 

Varela’s “radical enactivism.”. 
9 I owe this sense of “proto” to Resnick (1992), who speaks of “protoquantities” as developmental 
antecedents to more advanced mathematical reasoning. 



Enactivist Mathematics Learning  159 

-  D o s s i e r  -  

these new cognitive structures might be that would ground an enactive 
understanding of proportion. 

To recall, we are looking to ground mathematical ideas in sensorimotor 
experiences. As such, we think of mathematical learning as moving in new ways. 
In practice, we want kids first to figure out how to move in some new way, before 
they come to realize that this way of moving will become the meaning of some 
mathematical idea. That comes later. My practical methodology, which I call the 
action-based genre of embodied design (Abrahamson, 2014), consists of the 
following components. Note that the listing of these components, below, should 
not be taken as specifying steps in a rigorous sequence of resource development. 
Rather, we find educational design to be more like solving a puzzle—it is a 
cyclic, emergent, negotiated optimization process, where key insights occur 
sporadically, often through coming to understand the experience of our critical 
partners, the study participants. Or, as Georges Perec put it, 

« On en déduira quelque chose qui est sans doute l’ultime vérité 
du puzzle : en dépit des apparences, ce n’est pas un jeu 
solitaire. »10 

3.1 - From Notion to Motion— 
The Designer Animates the Mathematical Concept as a Dynamic Enactment 

What perceptually guided action should students perform, so that they come 
to enact the notion of proportion? Answering this question begins by pondering 
what the notion of proportion means to me, what it is for me. Donc, que sais-je ? 
Comment le sais-je ? How do I think of proportion? How do I think 
proportionately? How do I… become proportion?! (cf. Gerofsky, 2011) What is 
my tacit enactment of proportion? For example, how would I gesture 
“proportion?” If proportion be an image, what, then, are my “subtle inner micro-
gestures that are performed to elicit, stabilize, recognize, evaluate, rule out or 
enrich this image, as well as the bodily sensations and feelings that accompany 
this process” (Petitmengin, 2017, p. 104)?11 As such, I am looking to instantiate 
the targeted notion of proportion—to phenomenalize it (Pratt et al., 2006)—as 
some motor action or, perhaps, a coordination of two or more motor actions. 

Earlier, we considered the cumulative action of two hands coming together 
to enact the arithmetic operation of addition (the meaning of “+”). A motor 
action that instantiates a mathematical relation—such as proportion—might, 
moreover, enact a dynamic conservation of a spatially realized quantitative 
property across a span of exemplars (cf. Leung et al., 2013, on discerning 
invariants in dynamic geometry environments, such as GeoGebra). For example, 
we might enact the notion of proportional progression by first stacking both 
hands flat on the table, our makeshift “zero,” and then raising both hands while 
continuously increasing the vertical spatial interval between them. The hands are 
rising at different speeds, yet each is rising at its respective constant speed—
perhaps the top hand is rising double as fast as the lower hand—and yet a 

                                                 
10 “One will deduce from it something which is undoubtedly the ultimate truth of the puzzle: in spite of 

appearances, it is not a solitary play” (Perec, 1978, from La Vie mode d’emploi. Translated by D. Bellos, 

1987). 
11 Claire Petitmengin studied and co-authored with Francisco Varela. 
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comparison of their respective heights above the desk would evidence that they 
are maintaining a constant ratio, for example 1:2. Or you might note that the top 
hand is always double as high as the bottom hand; the bottom hand is always 
half as high as the top hand, and so on. I think of any such enactment as a 
conceptual choreography, a mathematical kata (Abrahamson, 2014; 
Abrahamson & Shulman, 2019). 

The various ways of perceptually maintaining a dynamic conservation—in 
the case of proportion these are: (a) continuously increasing the interval; (b) 
moving at different yet respectively constant speeds; (c) keeping a multiplicative 
relation fixed at x/y; or (d) at y/x; (e) keeping the hands aligned with an imaginary 
anchor point on the desk, down to one side12; and so on—each require a different 
way of orienting perceptually toward the moving hands, each foregrounds and 
attends to a different element or property of the situation, each is enabled by a 
different cognitive structure, each potentiates different mathematical meaning. 
Such plurality of methods for enacting one and the same mathematical notion 
(i.e., proportion) makes concretely manifest the concept’s polysemy, its 
cognitive cluster of conceptually complementary referents. Still, it is one thing 
to be able to enact each of these proto-mathematical polysemous solutions to a 
single motor-control problem. It is another thing to understand why or how this 
polysemy could be possible. We have found educational benefits in having 
students investigate enactive polysemy, for example, by asking them why the top 
hand moving double as fast as the bottom necessarily implies that the top hand 
is always double as high as the bottom hand. Investigations into enactive 
polysemy promote coherent conceptual understanding by recruiting and 
integrating diverse curricular content (Abrahamson et al., 2014) that, otherwise, 
is liable to remain inert and compartmentalized (Bereiter & Scardamalia, 1985). 

3.2 - Building an Activity—The Designer Situates a Proto-Mathematical 
Enactment as a Means of Performing a Task 

Up to this point, I have selected a mathematical notion I would like students 
to learn, and I have devised a generic movement form as a proposed 
phenomenalization of the notion. As explained earlier, I conceptualize the 
movement form as proto-mathematical, in the sense that learning to perform the 
form fosters prospective grounding for the mathematical notion; the experience 
of grounding is immanent to the new cognitive structures that students tacitly 
develop as their means of enabling their perception to guide the enactment of the 
new movement form. 

Ok, clear enough, I hope. Yes? No? But now, the enactivist designer asks, 
how might students learn to enact this movement form? I cannot give them 
performance instructions by way of mathematical description, because, well, 
they do not yet know the mathematical concept they are to learn by performing 
the movement form! We appear to be facing an epistemological anomaly‚ 
because we expect students to build a whole that is greater than the sum of 

                                                 
12 I owe this strategy to Rob Goldstone, personal communication, at Comal, Berkeley, circa 2012, over 
flutes innumerable of fair-trade organic mezcal. 
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available parts (Bereiter, 1985).13 At the same time, we face a potential 
motivational problem: How might we engage students in an activity by which 
they are to learn to perform some action (Ba & Abrahamson, 2021)? Finally, we 
face a pragmatic and axiological problem: How can we support numerous 
students who may not have access to school-based enactivist pedagogy? 

One way of fostering, motivating, and ethically administering the enactment 
of a new movement form is to install it as an operation on an interactive 
environment and, moreover, as a condition for performing a task. For example, 
if you want to motivate the performance of a palm rotation, you could situate it 
as a means of opening a jar. And so, the designer needs to envision some activity, 
where the target action would be the means of achieving a task objective. In so 
doing, I must ensure that students receive immediate feedback on the quality of 
their performance. If you will, I need to build some “jar,” so that you can readily 
monitor whether or not you are opening it.14 Thus, the target conceptual 
enactment is designed to constitute a continuous movement solution to an 
ongoing motor-control problem.15 How could digital technology implement this 
design principle? 

 

 

 

 

. 

  a              b              c           d 

Figure 1 
A Mathematics Imagery Trainer for Proportion (art: Virginia J. Flood) 

One can think of the enacted form as a proximal action, where the child’s 
hand movements effect a technologically mediated distal action on the 
environment (Abrahamson & Bakker, 2016). For example, Figure 1 features an 
exemplar of a technological design architecture we call a Mathematics Imagery 
Trainer (Abrahamson, 2012b; Abrahamson & Howison, 2008; Howison et al., 
2011), where enacting a particular movement form—here, raising the hands in a 

                                                 
13 For further readings on the “learning paradox,” see Prawat (1999), Neuman (2001), Hoffmann (2003), 

Norton (2009), and Abrahamson (2012a). 
14 Note that opening a jar is an ongoing action. At the human–jar interface is the lid, the jar’s contact 

surface. This lid is shaped in a basic geometrical form, a circle, which enables its smooth frictive threading 

onto the vessel. Amidst the circle’s figural simplicity, the requisite movement form of mobilizing the lid 
is of considerable motor complexity. Over and over again, at each micro-moment, we must kinesthetically 

adjust our anatomy, contorting our arm, forearm, hand, and fingers and adjusting the power of our grip 

so as to accommodate the inherent logic of an inert artifact, which, in turn, minutely elevates us as it 
opens. The movement form of opening a jar is not abrupt (ballistic)—it is a continuous engagement with 

an object, where we rapidly and iteratively correct our actions according to the jar’s mute “rule.” One can 

imagine a toddler first figuring out how to open and close a jar, perhaps a toy wood jar, and, through that, 
perhaps learning about circles. 
15 Unlike standard tasks in DGE (dynamic geometry environments), where the digital objects may prevent 

students from performing task-irrelevant actions, our designs let students freely manipulate the object and 
discover the constraints for themselves (Abrahamson & Abdu, 2020). 
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coordinated bi-manual scheme that instantiates a continuous proportional 
progression—causes a red screen to become green. The student’s task is to figure 
out which proximal actions cause the desired distal effects and to become 
sufficiently proficient at performing this feat. In so doing, the student must figure 
out how to wield the mediating artifact as an instrument for reaching and 
engaging with the environment. That figuring out is where new sensorimotor 
patterns emerge.16 

Figure 1 sketches four key stages in a paradigmatic learning experience, as 
the child figures out how to remote-manipulate two screen cursors so as to make 
the screen green and keep it green while moving, where the task has been set at 
a 1:2 ratio: (a) Initially, the screen is red, and the student places the cursors at 
some location that does not accord with the yet-unknown rule of the black box; 
(b) Through exploration, she finds a location pair that fits the rule, where her 
right hand is twice as high up along the screen than her left hand; (c) She believes 
that the rule is to keep a constant interval between the hands, and so she has 
raised her hands keeping the same distance (compare to b)—consequently the 
screen goes red, because the system’s embedded ratio rule has been violated; 
finally, (d) She discovers that the interval between her hands should increase as 
her hands rise (Abrahamson et al., 2011). 

3.3 - The Emergence of Proto-Mathematical Cognitive Structures— 
The Designer Analyzes What Structure the Student Should Construct 

Let’s focus on this interval between the hands—this nothing that is. I find it 
an utter elusive wonder that our interactions with the environment bring forth to 
our attention something we had not noticed before. We invent an instrument, in 
this case an invisible instrument—a spatial gap—that enables us to get our work 
done by perceptually guiding our actions. This emergent mental instrument—
that is, a stabilized ecologically embedded sensorimotor pattern that enables 
perception to guide action—is the enactivist cognitive structure, and our 

                                                 
16 Per Vérillon et Rabardel (1995), the technology plays a role as a digital artifact (une boîte noir) that the 

student must “instrumentalize” as their means of effecting the desired distal action. But for that, and 

through that, the student must “instrument” their proximal actions, that is, the artifact comes to extend 
their intentionality onto the environment. It is there, in this process of instrumenting, that lies the potential 

for learning to enact a new movement form. As Rabardel (1993) states, « [D]ans les situations où la 

résolution du problème passe par la mise en oeuvre d’artefacts, de tels schèmes familiers constituent la 
composante schème des instruments dont les artefacts forment l’autre composante. Or, non seulement ces 

schèmes ont une genèse, mais comme les artefacts, ils peuvent se voir attribuer de nouvelles 

significations. La genèse des schèmes, l’assimilation de nouveaux artefacts aux schèmes (donnant ainsi 
une nouvelle signification aux artefacts), l’accommodation des schèmes (contribuant à leurs changements 

de signification), sont constitutifs de cette seconde dimension de la genèse instrumentale : les processus 

d’instrumentation » (pp. 116–117). For further embodied-design elaboration of Vérillon and Rabardel’s 
theory of Instrumented Activity Situations, see Shvarts et al. (2021). “[I]n situations where the resolution 

of the problem passes through the implementation of artefacts, such familiar schemes constitute the 

scheme component of the instruments of which the artefacts form the other component. However, not 
only do these schemes have a genesis, but like artefacts, they can be attributed new meanings. The genesis 

of schemes, the assimilation of new artefacts to schemes (thus giving a new meaning to artefacts), the 

accommodation of schemes (contributing to their changes in meaning), are constitutive of this second 
dimension of instrumental genesis: the processes of instrumentation.” (edited Google translation) 
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biological capacity to create these cognitive structures is the enactivist answer 
to the would-be epistemological paradox that has plagued philosophers 
searching for meaning. Our neurocognitive capacity of stabilizing emergent 
sensorimotor patterns is our biological epistemic means of constructing 
meaning. 

Ok, let’s take stock of where we are. We have a working context—the 
Mathematics Imagery Trainer for Proportion—to take on the pedagogical 
challenge posed for educational designers by the enactivist dictum quoted above: 
“(2) cognitive structures emerge from the recurrent sensorimotor patterns that 
enable action to be perceptually guided.” And we have characterized the interval 
as the emergent cognitive structure that enables the student to perceptually guide 
the performance of task-appropriate actions to solve the motor-control problem. 
Perhaps I should elaborate on this process just a tad more. 

It is difficult to coordinate raising your hands at different speeds. It is easier 
to manipulate a single object. The student tacitly crystalizes this interval-form 
through their sensorimotor exploration; the form becomes interpolated into the 
student’s perception–action loop; this form enables the student to sustain a new 
task-effective sensorimotor pattern. The interval between the hands may first 
emerge as a candidate cognitive structure when one still erroneously believes 
that the interval should be constant (in Figure 1, compare images b & c). This 
tool turns out to be inadequate, and so one explores further, until an adjusted 
sensorimotor pattern emerges, because it turns out to better generate the desired 
feedback, that is, to enable one to perform the task. Enfin, on peut le faire ! 

The interval pops up from negative space to become a thing one can 
manipulate, think about, talk about, measure, and copy to paper (Abrahamson et 
al., 2011; Bongers, 2020; Flood et al. 2016). We call this cognitive structure an 
attentional anchor—it is an aspect of the environment whose perception enables 
task-effective action (Abrahamson & Sánchez-García, 2016; Hutto & Sánchez-
García, 2015). Whereas attentional anchors may emerge spontaneously in the 
course of solving a motor-control problem, they might also be highlighted, 
indexed, or otherwise implied by instructors (Flood et al., 2020). 

3.4 - From Action to Symbol17—Designing for Mathematical Modeling of 
Attentional Anchors 

How do attentional anchors come to ground mathematical practice? We now 
examine what happens when the “rubber” of enacting proto-mathematical 
movement forms meets the “road” of formal mathematical practice 

The cognitive birth of mathematical thinking is momentous, for it 
decomposes and recomposes our flowing know-how. The moment we become 
conscious of the tacit attentional anchor—the moment we come to think about 
it—monistic subject–object duality is rattled, parsed, severed, and cleft asunder 
into explicit articulated particles that we experience as being things out there. As 
thinking-for-speaking kicks in, a discursive wedge (Sfard, 2007, p. 603) breaks-
down our naïve experience of a tool as being ready-to-hand, rendering it present-
at-hand—“The environment announces itself afresh” (Heidegger, [1927], 

                                                 
17 I owe this phrase to Bamberger (1999). 
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pp. 105-106). Now we’re not just doing, we’re thinking about doing, as couched 
in syntactic taxonomy. Once referred to, an attentional anchor can serve as an 
enactive-to-semiotic pivot (cf. Bartolini Bussi & Mariotti, 2008, p. 757). A sign 
is born. 
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Figure 2 
The Introduction of Enactive-cum-Semiotic Resources Into the Sensorimotor Learning Environment 

Through Three Schematic Interface Modes 

Figure 2a presents the vacant screen of a Mathematics Imagery trainer. In 
this continuous space, students figure out how to move their hands 
simultaneously to make the screen green, and they use qualitative language to 
describe their strategy, for example, “The higher I raise my hands, the bigger I 
make the distance between them.” At that point, the tutor—whether a human or 
an artificially intelligent pedagogical avatar—turns on a grid of lines, as sketched 
in Figure 2b. Students recognize in this new digital artifact embedded utilities 
for enhancing their strategy. They utilize the grid to enhance their: (a) enactment, 
by adopting the lines as perceptual markers of action destination (a pragmatic 
enhancement); (b) evaluation, by using the lines to measure the interval with 
greater precision (an epistemic enhancement); or (c) explanation, by pointing to 
the lines to improve the intelligibility of their strategy (a discursive 
enhancement). And yet, in the course of assimilating the horizontal lines into 
their perception–action loop, the strategy itself changes, as does students’ 
thinking about the strategy. Now the space is discrete, not continuous, and 
students find themselves moving their hands sequentially, not simultaneously: 
they raise one hand until the cursor reaches a line, then they raise the other hand 
farther up until they find green. Soon the student exclaims their quantitative, not 
qualitative, strategy: “For every one line I go up on the left, I go up two lines on 
the right.” Thus, the grid shifts surreptitiously from constituting an enactive 
instrument to a mathematical frame of reference. When, finally, we activate 
numerals as well (see Figure 2c), students draw on their arithmetic skills to 
recognize the multiplicative constant inherent to the proportional progression, 
for example, they note that the right-hand cursor is always double as high as the 
left-hand cursor (Abrahamson et al., 2011; Abrahamson et al., 2014). 

Radical constructivists have recognized the importance of facilitating an 
epistemic elaboration from an emergent cognitive structure to reflection and 
formalization. Students begin by “having” a dynamic image (Pirie & Kieren, 
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1994), yet, given auspicious social conditions, will then advance to 
“‘languaging’ and giving it form in the domain of consensual coordination of 
action in which we exist as human beings” (Steffe & Kieren, 1994, p. 723, citing 
Maturana, 1978). The grid and numerals used in the Mathematics Imagery 
Trainer for Proportion demonstrate how, as a designer, I need to determine what 
supplementary resources might be introduced into the activity space to augment 
the student’s pragmatic, epistemic, or discursive experience and, in so doing, 
shift the student’s socio-cognitive engagement from immersed action into 
normative mathematical discourse about their action. 

But the designer’s work does not end in creating artifacts. It matters how the 
new resources are introduced and positioned relative to the task. For example, if 
the resources are framed as irrelevant or as potential distractors, the student may 
be less inclined to appropriate them as enactive or semiotic enhancers 
(Abrahamson et al., 2012, p. 82). Elsewhere, we have elaborated on the tutor’s 
nuanced role in facilitating enactive learning: see Flood et al. (2020, 2022) for 
analysis that draws on Co-Operative Action (Goodwin, 2013) and the 
ethnomethodological approach to conversation analysis (Mondada, 2014); and 
see Shvarts and Abrahamson (2019, 2023) for analyses that draw on dynamic 
systems theory (Kelso, 1995) and cultural–historical psychology Vygotsky 
(1926/1997). 

3.5 - What’s Going On?— 
The Design-Based Researcher Monitors the Learning Process  

Finally, wearing the researcher hat, I need to embed into the learning 
environment instruments that will enable me to gather the empirical data I 
require to perform multimodal learning analytics (MMLA) of students’ actions, 
products, and utterances (Abrahamson, Worsley et al., 2022; Worsley & 
Blikstein, 2014). As a Little Prince once told us, 

“Les grandes personnes ne comprennent jamais rien par elles-
mêmes, et c’est ennuyeux pour les enfants d’être toujours et 
toujours en train de leur expliquer des choses.”18 (A. de Saint-
Exupéry) 

For example, I may wish to track students’ manual and optical movements 
as they work on a task, and triangulate these with students’ verbal–gestural 
expression, because doing so could help me determine what sensorimotor 
patterns are emerging into cognitive structures enabling the perceptual guidance 
of task-effective motor action. I could then run quantitative analyses of these 
sensorimotor behaviors to identify and characterize features and trends of this 
emergence, such as through Recurrence Quantification Analysis (RQA, Marwan 
et al., 2007). 

MMLA of our empirical implementations has revealed an array of attentional 
anchors that study participants develop spontaneously as their perceptual means 
of enacting the goal movements in the Mathematics Imagery Trainer tasks 
(Abrahamson et al., 2015; Duijzer et al., 2017). Furthermore, using RQA, we 

                                                 
18 “Grown-ups never understand anything by themselves, and it is tiresome for children to be always and 
forever explaining things to them.” (A. de Saint-Exupéry). 
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were able to demonstrate that students’ manual actions (Tancredi et al., 2021), 
eye movements (Abdu et al., 2023), and hand–eye coordination (Tancredi, 
Abdu, et al., 2022) manifest characteristic properties of complex dynamic 
systems in flux, such as emergence, reduction of entropy, and phase transitions. 

With that, we conclude our proposed answers to the two driving questions of 
this essay: (1) What would an enactivist mathematics pedagogy look like? And 
(2) What would a research program look like that evaluated whether the 
proposed pedagogy is indeed implementing these enactivist ideas? We call this 
entire research paradigm embodied design (Abrahamson, 2009, 2012c, 2014, 
2019; Abrahamson et al., 2020; Abrahamson, Dutton, & Bakker, 2022; 
Abrahamson et al., 2023). The scope of our embodied design research program 
includes the development of mechanical, digital, and mechatronic educational 
resources for a range of K–16 concepts (Alberto et al., 2021) and serving 
students of intersectional diversity, such as students with sensory and cognitive 
difference (Lambert et al., 2022; Tancredi, Chen, et al., 2022), minoritized 
multilingual students (Liu & Takeuchi, 2023), students at remote locations 
(Shvarts & van Helden, 2021), and Indigenous students with unique 
epistemological–linguistic heritage (Benally et al., 2022). As embodied design 
becomes adopted by schools, we look to understand how best to integrate the 
activities into existing classroom practices, perhaps transforming these practices 
(Kosmas & Zaphiris, 2023). 

4 – FAREWELL TO PIRÉZIA 

You land in Mathematics national airport. For argument’s sake, let’s assume 
you don’t speak or read Math. You want to find your relations. You see a sign 
showing “tan� ”. What does tan� mean to you? Let’s try the following. I’m 
going to ask you to move your hands, perhaps as though you were conducting 
an orchestra, or, better, painting on a canvas with two brushes. So, take a seat, 
and here’s what I invite you to do. 

Imagine a canvas in front of you, within comfortable reach. Your left hand 
will move up and down on the left side of the canvas, and your right hand will 
move right and left on the bottom of the canvas. In a sense, your left hand is 
moving along a y-axis, and your right hand is moving along an x-axis. Your 
hands can meet at the bottom-left corner of the canvas, the origin point of the 
two axes. Is this making sense? Ok, there’s more. Your hands will be moving 
orthogonally, yes? Because they’re tracing along the vertical and horizontal 
axes. And they will move simultaneously… Can you do that, all the while 
keeping the hands on orthogonal trajectories? But there’s one more thing. Sorry. 
Your hands need to be moving proportionately as well. I’m choosing the ratio 
1:2. How’s that for you? It means your right hand must always be twice as far 
away from the imaginary origin point as the left hand. Work on this. Enjoy it. 
As we say in Mathematics, knock yourself out! 

When we asked young Dutch children to perform this challenging task on a 
tablet, they bewildered us with the originality and variety of their creative 
perceptual solutions to this coordination problem. They spontaneously 
developed effective attentional anchors to facilitate their enactment of this 
simultaneous, orthogonal, proportional bimanual movement form (Shayan et al., 
2017). We were tracking their eye movements during this experiment, however 
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these gaze data would become available to us only post facto, when the 
experiment was over and the data were analyzed and overlaid onto the video 
footage. As such, we could not tell in real time how the students were performing 
the task, and so the tutor–researcher asked them. Several study participants 
alluded to some diagonal line running down the screen from the top-left corner 
down to the bottom-right corner. One child patiently explained to the confused 
interviewer, “Het blijft, zeg maar, op één lijn”—“It stays, let’s say, on one line.” 

“What line?” you might wonder. “Where is it? What is this little prince 
talking about?!” Patience, please. Back to our canvas. Hands up, every body 
move!19 Place your hands at some pair of locations that are at 1:2 distances from 
the imaginary origin. Now, “see” a diagonal line between your left and right 
hands.20 Once this line has stabilized in your perception, move the line to the 
right, keeping it angled just the same way. That is, do what it takes—
simultaneously, orthogonally—so that the diagonal moves to the right without 
changing its orientation. Can you do that? If you attend exclusively to the line, 
you’ll find that you have raised your left hand a bit and have moved your right 
hand double as much to the right. But if you attend to one of your hands…, you 
might “lose” the diagonal line. So, stay focused, attending to the diagonal line. 
Now try moving this line to the left. Stopping to think about it, what did your 
hands do? 

The line is your attentional anchor. It’s not really there, but, then again, what 
is ever really there? What is reality anyway, but a figment of our perception? 
You now have a new cognitive structure enabling your perception to guide your 
actions of enacting the challenging movement (Mechsner et al., 2001). In turn, 
we can discuss this perceptual activity mathematically (Abrahamson & 
Mechsner, 2022). Still, we must now transition from hand-waving to numbers; 
from legerdemain to prestidigitation. So, let’s do that now. 

If you think of your left hand as running up the vertical side of a right triangle, 
and the right hand running along its horizontal side, then the diagonal is the 
triangle’s hypothenuse. As you move the diagonal to the left and right, the sides 
of this right triangle change, but a constant ratio is maintained between their 
lengths. All these dilating and contracting triangles are geometrically similar—
they are precisely the same shape only bigger or smaller. But the line always 
leans at the same angle. 

We could stop there. But let’s push this just a bit more into trigonometry. The 
line’s angle of leaning is at about 27° to the horizon (arctan .5 = 26.565°). When 
we divide the length of our 1:2 triangle’s vertical side by its horizontal side, we 
get .5. In trigonometric terms we talk about this this quotient of .5 as a function 
of the angle of ~27°, which we mark as �. We call the function tan, so tan� = .5. 
No matter how big or small a right triangle is, if the quotient of its measured 
sides is .5, then the angle opposite the shorter side will always measure at ~27°.21 

                                                 
19 I owe this pun to Petrick (2012). 
20 The imaginary line is a projection that runs between the hands (cf. Kirsh, 2009). 
21 Trigonometric functions, such as tan⍺ , are often introduced through the unit circle. For examples of 

action-based embodied design for trigonometry, the reader is referred to the work of Anna Shvarts 
(Alberto et al., 2021). 
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So now you speak Math. The symbol has been grounded. Giant step for 
humankind. Welcome to Mathematics. Enjoy your stay! 

CONCLUSION 

Mathematical thinking, teaching, and learning are enactive cognitive 
activities distributed over routinized manipulations of socially established 
semiotic resources that emerged through cultural–historical practice. To 
participate meaningfully in mathematical work, individuals need to develop 
appropriate cognitive structures. By cognitive structures, we refer to neural 
substrates orchestrating consistent forms of purposeful interaction with the 
environment. These cognitive structures guide the identification and engagement 
of environmental circumstances affording adaptive perception–action loops. 
Cognitive structures lend us a sense of a figured world populated by ontologies, 
some of which may be idiosyncratic and others culturally shared, thus 
facilitating our social traffic. The embodied design paradigm organizes an 
ongoing research program to innovate, develop, and evaluate learning activities 
that implement enactivist philosophy in the form of interactive educational 
resources. The paradigm encompasses theoretical constructs, design principles, 
and methodological techniques centered on the pedagogical objective that 
students develop cognitive structures enabling them to ground the symbols and 
discourse of disciplinary practice. 

REFERENCES 

Abdu, R., Tancredi, S., Abrahamson, D., & Balasubramaniam, R. (2023). A complex-
systems view on mathematical learning as hand–eye coordination. In M. Schindler, 
A. Shvarts, & A. Lilienthal (Eds.), Eye-tracking research in mathematics education 
[Special issue]. Educational Studies in Mathematics.  
https://doi.org/10.1007/s10649-023-10279-0 

Abrahamson, D. (2009). Embodied design: Constructing means for constructing 
meaning. Educational Studies in Mathematics, 70(1), 27–47. 

Abrahamson, D. (2012a). Rethinking intensive quantities via guided mediated abduction. 
Journal of the Learning Sciences, 21(4), 626–649.  
https://doi.org/10.1080/10508406.2011.633838 

Abrahamson, D. (2012b). Mathematical Imagery Trainer—Proportion (MIT-P) 
IPhone/iPad application (Terasoft). In iTunes.  
https://itunes.apple.com/au/app/mathematical-imagery-trainer/id563185943 

Abrahamson, D. (2012c). Discovery reconceived: Product before process. For the 
Learning of Mathematics, 32(1), 8–15. 

Abrahamson, D. (2014). Building educational activities for understanding: An 
elaboration on the embodied-design framework and its epistemic grounds. 
International Journal of Child-Computer Interaction, 2(1), 1–16.  
https://doi.org/10.1016/j.ijcci.2014.07.002 

Abrahamson, D. (2021). Grasp actually: An evolutionist argument for enactivist 
mathematics education. Human Development, 65(2), 1–17.   
https://doi.org/10.1159/000515680 

Abrahamson, D., & Abdu, R. (2020). Towards an ecological-dynamics design 
framework for embodied-interaction conceptual learning: The case of dynamic 
mathematics environments. In T. J. Kopcha, K. D. Valentine, & C. Ocak (Eds.), 
Embodied cognition and technology for learning [Special issue]. Educational 
Technology Research and Development, 69, 1889–1923.  
https://doi.org/10.1007/s11423-020-09805-1 



Enactivist Mathematics Learning  169 

-  D o s s i e r  -  

Abrahamson, D., & Bakker, A. (2016). Making sense of movement in embodied design 
for mathematics learning. In N. Newcombe & S. Weisberg (Eds.), Embodied 
cognition and STEM learning [Special issue] [journal article]. Cognitive Research: 
Principles and Implications, 1(1), 1–13. https://doi.org/10.1186/s41235-016-0034-3 

Abrahamson, D., Dutton, E., & Bakker, A. (2022). Towards an enactivist mathematics 
pedagogy. In S.A. Stolz (Ed.), The Body, Embodiment, and Education: An 
Interdisciplinary Approach (pp. 156–182). New York, NY, Routledge. 

Abrahamson, D., Gutiérrez, J.F., Charoenying, T., Negrete, A.G., & Bumbacher, E. 
(2012). Fostering hooks and shifts: Tutorial tactics for guided mathematical 
discovery. Technology, Knowledge, and Learning, 17(1–2), 61–86.  
https://doi.org/10.1007/s10758-012-9192-7 

Abrahamson, D., & Howison, M. (2008). Kinemathics: Kinetically induced 
mathematical learning UC Berkeley Gesture Study Group (E. Sweetser, Organizer), 
December 5, 2008 . 
https://edrl.berkeley.edu/wp-content/uploads/2019/06/Abrahamson-Howison-
2008_kinemathics.pdf 

Abrahamson, D., Lee, R.G., Negrete, A.G., & Gutiérrez, J.F. (2014). Coordinating 
visualizations of polysemous action: Values added for grounding proportion. ZDM 
Mathematics Education, 46(1), 79–93. https://doi.org/10.1007/s11858-013-0521-7 

Abrahamson, D., & Mechsner, F. (2022). Toward synergizing educational research and 
movement sciences: A dialogue on learning as developing perception for action. 
Educational Psychology Review, 34(3), 1813–1842.   
https://doi.org/10.1007/s10648-022-09668-3 

Abrahamson, D., Nathan, M.J., Williams-Pierce, C., Walkington, C., Ottmar, E.R., 
Soto, H., & Alibali, M.W. (2020). The future of embodied design for mathematics 
teaching and learning [Original Research]. Frontiers in Education, 5(147).  
https://doi.org/10.3389/feduc.2020.00147 

Abrahamson, D., & Sánchez-García, R. (2016). Learning is moving in new ways: The 
ecological dynamics of mathematics education. Journal of the Learning Sciences, 
25(2), 203–239. https://doi.org/10.1080/10508406.2016.1143370 

Abrahamson, D., Shayan, S., Bakker, A., & van der Schaaf, M.F. (2015). Eye-tracking 
Piaget: Capturing the emergence of attentional anchors in the coordination of 
proportional motor action. Human Development, 58(4–5), 218–244.  
https://doi.org/10.1159/000443153 

Abrahamson, D., & Shulman, A. (2019). Co-constructing movement in mathematics and 
dance: An interdisciplinary pedagogical dialogue on subjectivity and awareness. 
Feldenkrais Research Journal, 6, 1–24.  
https://feldenkraisresearchjournal.org/index.php/journal/article/view/13/8 

Abrahamson, D., Tancredi, S., Chen, R. S. Y., Flood, V. J., & Dutton, E. (2023). 
Embodied design of digital resources for mathematics education: Theory, 
methodology, and framework of a pedagogical research program. In B. Pepin, G. 
Gueude, & J. Choppin (Eds.), Handbook of Digital Resources in Mathematics 
Education. Berlin, Springer. 

Abrahamson, D., & Trninic, D. (2015). Bringing forth mathematical concepts: Signifying 
sensorimotor enactment in fields of promoted action. ZDM Mathematics Education, 
47(2), 295–306. https://doi.org/10.1007/s11858-014-0620-0 

Abrahamson, D., Trninic, D., Gutiérrez, J.F., Huth, J., & Lee, R.G. (2011). Hooks and 
shifts: A dialectical study of mediated discovery. Technology, Knowledge, and 
Learning, 16(1), 55–85. https://doi.org/10.1007/s10758-011-9177-y 

Abrahamson, D., & Wilensky, U. (2007). Learning axes and bridging tools in a 
technology-based design for statistics. International Journal of Computers for 
Mathematical Learning, 12(1), 23–55. 



170 Dor ABRAHAMSON 

-  D o s s i e r  -  

Abrahamson, D., Worsley, M., Pardos, Z.A., & Ou, L. (2022). Learning analytics of 
embodied design: Enhancing synergy. International Journal of Child–Computer 
Interaction, 32, 100409. https://doi.org/10.1016/j.ijcci.2021.100409 

Abram, D. (1996). The Spell of the Sensuous: Perception and Language in a More-than-
Human World. New York, NY, Random House. 

Alberto, R., Shvarts, A., Drijvers, P., & Bakker, A. (2021). Action-based embodied 
design for mathematics learning: A decade of variations on a theme. International 
Journal of Child–Computer Interaction, 100419.  
https://doi.org/10.1016/j.ijcci.2021.100419 

Ba, H., & Abrahamson, D. (2021). Taking design to task: A dialogue on task-initiation 
in STEM activities. Educational Designer, 4(14), 1–21.   
http://www.educationaldesigner.org/ed/volume4/issue14/article54/ 

Bakker, A. (Ed.). (2018). Design Research in Education: A Practical Guide for Early 
Career Researchers. New York, NY, Routledge. 

Bamberger, J. (1999). Action knowledge and symbolic knowledge: The computer as 
mediator. In D. Schön, B. Sanyal, & W. Mitchell (Eds.), High Technology and Low 
Income Communities (pp. 235–262). Cambrige, MA, MIT Press 

Barton, B. (2008). The Language of Mathematics: Telling Mathematical Tales. Berlin, 
Springer. 

Bartolini Bussi, M.G., & Mariotti, M.A. (2008). Semiotic mediation in the mathematics 
classroom: Artefacts and signs after a Vygotskian perspective. In L.D. English, 
M.G. Bartolini Bussi, G.A. Jones, R. Lesh, & D. Tirosh (Eds.), Handbook of 
International Research in Mathematics Education, 2nd revised edition (pp. 720–
749). Mahwah, NJ, Lawrence Erlbaum Associates. 

Benally, J., Palatnik, A., Ryokai, K., & Abrahamson, D. (2022). Learning through 
negotiating conceptually generative perspectival complementarities: The case of 
geometry. For the Learning of Mathematics, 42(3), 34–41. 

Bereiter, C. (1985). Towards the solution of the learning paradox. Review of Educational 
Research, 55(2), 210–226. 

Bereiter, C., & Scardamalia, M. (1985). Cognitive coping strategies and the problem of 
"inert knowledge". In S.F. Chipman, J.W. Segal, & R. Glaser (Eds.), Thinking and 
Learning Skills: Current Research and Open Questions (Vol. 2 [Research and open 
questions], pp. 65–80). Mahwah, NJ, Lawrence Erlbaum Associates. 

Bongers, T.J.D. (2020). Transfer of embodied experiences in a tablet environment 
towards a pen and paper task. Unpublished Master’s thesis (Applied cognitive 
psychology). Utrecht University. 

Clements, D.H., & Sarama, J. (2015). Discussion from a mathematics education 
perspective. In J. Torbeyns, C. Gilmore, & L. Verschaffel (Eds.), The acquisition of 
preschool mathematical abilities: Theoretical, methodological and educational 
considerations [Special issue]. Mathematical Thinking and Learning, 17(2–3), 244–
252. https://doi.org/10.1080/10986065.2015.1016826 

Collins, A. (1992). Towards a design science of education. In E. Scanlon & T. O'shea 
(Eds.), New Directions in Educational Technology (pp. 15–22). New York, NY, 
Springer. 

Donald, M. (1991). Origins of the Modern Mind: Three Stages in the Evolution of Culture 
and Cognition. Cambridge, MA, Harvard University Press. 

Donald, M. (2001). A Mind so Rare: The Evolution of Human Consciousness. New York, 
NY, W.W. Norton & Company. 

Dreyfus, H.L., & Dreyfus, S.E. (1999). The challenge of Merleau-Ponty's 
phenomenology of embodiment for cognitive science. In G. Weiss & H.F. Haber 
(Eds.), Perspectives on Embodiment: The Intersections of Nature and Culture 
(pp. 103–120). New York, NY, Routledge. 

Drury, N., & Tudor, K. (2023). Radical enactivism: A guide for the perplexed. Journal 
of Theoretical and Philosophical Psychology. https://doi.org/10.1037/teo0000225 



Enactivist Mathematics Learning  171 

-  D o s s i e r  -  

Duijzer, A.C.G., Shayan, S., Bakker, A., van der Schaaf, M.F., & Abrahamson, D. 
(2017). Touchscreen tablets: Coordinating action and perception for mathematical 
cognition. In J. Tarasuik, G. Strouse, & J. Kaufman (Eds.), Touchscreen tablets 
touching children's lives [Special issue] [Original Research]. Frontiers in 
Psychology, 8(144). https://doi.org/10.3389/fpsyg.2017.00144 

Easterday, M.W., Rees Lewis, D.G., & Gerber, E.M. (2016). The logic of the theoretical 
and practical products of design research. Australasian Journal of Educational 
Technology, 32(4), 125–144. 

Flood, V.J. (2018). Multimodal revoicing as an interactional mechanism for connecting 
scientific and everyday concepts. Human Development, 61(3), 145–173.  
https://doi.org/10.1159/000488693 

Flood, V.J., Harrer, B.W., & Abrahamson, D. (2016). The interactional work of 
configuring a mathematical object in a technology-enabled embodied learning 
environment. In C.-K. Looi, J.L. Polman, U. Cress, & P. Reimann (Eds.), 
“Transforming Learning, Empowering earners”. Proceedings of the International 
Conference of the Learning Sciences (ICLS 2016) (Vol. 1, “Full Papers,” pp. 122–
129). International Society of the Learning Sciences. 

Flood, V.J., Shvarts, A., & Abrahamson, D. (2020). Teaching with embodied learning 
technologies for mathematics: Responsive teaching for embodied learning. ZDM 
Mathematics Educaion, 52(7), 1307–1331.   
https://doi.org/10.1007/s11858-020-01165-7 

Flood, V.J., Shvarts, A., & Abrahamson, D. (2022). Responsive teaching for embodied 
learning with technology. In S. Macrine & J. Fugate (Eds.), Movement Matters: How 
Embodied Cognition Informs Teaching and Learning (pp. 179–195). Cambridge, 
MA, MIT Press. 

Gerofsky, S. (2011). Seeing the graph vs. being the graph: Gesture, engagement and 
awareness in school mathematics. In G. Stam & M. Ishino (Eds.), Integrating 
Gestures (pp. 245–256). Amsterdam, John Benjamins. 

Gibson, J.J. (1977). The theory of affordances. In R. Shaw & J. Bransford (Eds.), 
Perceiving, Acting and Knowing: Toward an Ecological Psychology (pp. 67–82). 
Mahwah, NJ, Lawrence Erlbaum Associates. 

Glenberg, A.M. (2006). Radical changes in cognitive process due to technology: A 
jaundiced view. In S. Harnad & I.E. Dror (Guest Eds.), Distributed cognition [Special 
issue]. Pragmatics & Cognition, 14(2), 263–274.  
https://doi.org/10.1075/pc.14.2.07gle 

Goodwin, C. (2013). The co-operative, transformative organization of human action and 
knowledge. Journal of Pragmatics, 46(1), 8–23.  
https://doi.org/10.1016/j.pragma.2012.09.003 

Hardison, H.L. (2019). Four attentional motions involved in the construction of 
angularity. In S. Otten, A.G. Candela, Z. de Araujo, C. Haines, & C. Munter (Eds.), 
Proceedings of the 41st annual meeting of the North American Chapter of the 
International Group for the Psychology of Mathematics Education (pp. 360–369). 
University of Missouri.  

Harnad, S. (1990). The symbol grounding problem. Physica D, 42, 335–346. 
Heidegger, M. [1927]. Being and Time (J. Macquarrie & E. Robinson, Trans.). Harper & 

Row, 1962. 
Heft, H. (1989). Affordances and the body: An intentional analysis of Gibson’s 

ecological approach to visual perception. Journal for the Theory of Social Behaviour, 
19(1), 1–30. 

Hoffmann, M.H.G. (2003). Peirce's 'diagrammatic reasoning' as a solution of the learning 
paradox. In G. Debrock (Ed.), Process Pragmatism: Essays on a Quiet Philosophical 
Revolution (pp. 121–143). Amsterdam, Rodopi. 

Howison, M., Trninic, D., Reinholz, D., & Abrahamson, D. (2011). The Mathematical 
Imagery Trainer: From embodied interaction to conceptual learning. In 



172 Dor ABRAHAMSON 

-  D o s s i e r  -  

G. Fitzpatrick, C. Gutwin, B. Begole, W. A. Kellogg, & D. Tan (Eds.), Proceedings 
of the annual meeting of The Association for Computer Machinery Special Interest 
Group on Computer Human Interaction: “Human Factors in Computing Systems” 
(CHI 2011) (Vol. "Full Papers", pp. 1989–1998). ACM Press. 

Hutto, D.D. (2019). Re-doing the math: Making enactivism add up. Philosophical 
Studies, 176(3), 827–837. https://doi.org/10.1007/s11098-018-01233-5 

Hutto, D.D., & Sánchez-García, R. (2015). Choking RECtified: Embodied expertise 
beyond Dreyfus. Phenomenology and the Cognitive Sciences, 14(2), 309–331. 
https://doi.org/10.1007/s11097-014-9380-0 

Kelso, J.A.S. (1995). Dynamic Patterns: The Self-organization of Brain and Behavior. 
Cambridge, MA, MIT Press. 

Kirsh, D. (2009). Projection, problem space and anchors. In N. Taatgen, H. van Rijn, & 
L. Schomaker (Eds.), Proceedings of the 31st Annual Conference of the Cognitive 
Science Society (pp. 2310–2315). Mahwah, NJ, Lawrence Erlbaum Associates. 

Kosmas, P., & Zaphiris, P. (2023). Improving students’ learning performance through 
Technology-Enhanced Embodied Learning: A four-year investigation in classrooms. 
Education and Information Technologies.   
https://doi.org/10.1007/s10639-022-11466-x 

Lambert, S.G., Fiedler, B.L., Hershenow, C.S., Abrahamson, D., & Gorlewicz, J.L. 
(2022). A tangible manipulative for inclusive quadrilateral learning. The Journal on 
Technology and Persons with Disabilities, 10, 66–81. 

Leung, A., Baccaglini-Frank, A., & Mariotti, M. A. (2013). Discernment of invariants in 
dynamic geometry environments. Educational Studies in Mathematics, 84(3), 439–
460. 

Liu, S., & Takeuchi, M.A. (2023). Embodied mathematical pedagogy to liberate 
racialized and multilingual bodies. Educational Studies in Mathematics, 112(2), 267–
287. https://doi.org/10.1007/s10649-022-10185-x 

Marwan, N., Romano, M. C., Thiel, M., & Kurths, J. (2007). Recurrence plots for the 
analysis of complex systems. Physics Reports, 438, 237–239. 

Maturana, H. (1978). Biology of language: The epistemology of reality. In G. Miller & 
E. Lenneberg (Eds.), Psychology and Biology of Language and thought (pp. 1–27). 
New York: Academic Press. 

Mechsner, F., Kerzel, D., Knoblich, G., & Prinz, W. (2001). Perceptual basis of bimanual 
coordination. Nature, 41(6859), 69–73. https://doi.org/10.1038/35102060 

Mondada, L. (2014). The local constitution of multimodal resources for social 
interaction. Journal of Pragmatics, 65, 137–156.  
https://doi.org/10.1016/j.pragma.2014.04.004 

Nathan, M.J. (2012). Rethinking formalisms in formal education. Educational 
Psychologist, 47(2), 125–148. https://doi.org/10.1080/00461520.2012.667063 

Neuman, Y. (2001). Can the Baron von Münchausen phenomenon be solved? An 
activity-oriented solution to the learning paradox. Mind, Culture & Activity, 8(1), 78–
89. 

Norton, A. (2009). Re-solving the learning paradox: Epistemological and ontological 
questions for radical constructivism. For the Learning of Mathematics, 29(2), 2–7. 

Petitmengin, C. (2007). Towards the source of thoughts: The gestural and transmodal 
dimension of lived experience. Journal of Consciousness Studies, 14(3), 54–82. 

Petitmengin, C. (2017). Enaction as a lived experience: Towards a radical 
neurophenomenology. Constructivist Foundations, 12(2), 139–147.  
http://constructivist.info/12/2/139.petitmengin 

Perec, G.H. (1978). La Vie mode d'emploi. Paris, Hachette. 
Petrick, C.J. (2012). Every body move: Learning mathematics through embodied actions. 

University of Texas at Austin. (Unpublished doctoral dissertation). 
Piaget, J. (1968). Le structuralisme. Paris, Presses Universitaires de France. 
Piaget, J. (1970). Structuralism (C. Maschler, Trans.). New York, NY, Basic Books. 



Enactivist Mathematics Learning  173 

-  D o s s i e r  -  

Piaget, J. (1971). Genetic Epistemology (E. Duckworth, Trans.). New York, NY, 
Columbia University Press. 

Piaget, J. (1970). L’épistemémologie génétique. Paris, Presses Universitaires de France. 
Pirie, S.E B., & Kieren, T.E. (1994). Growth in mathematical understanding: How can 

we characterize it and how can we represent it? Educational Studies in Mathematics, 
26(2–3), 165–190. 

Pratt, D., Jones, I., & Prodromou, T. (2006, July). An elaboration of the design construct 
of phenomenalisation. Paper presented at the Seventh International Conference on 
Teaching Statistics, Salvador, Bahia, Brazil, July 2–7, 2006. 

Prawat, R.S. (1999). Dewey, Peirce, and the learning paradox. American Educational 
Research Journal, 36, 47–76. 

Rabardel, P. (1993). Les hommes et les technologies ; une approche cognitive des 
instruments contemporains. Armand Colin. ffhal-01017462f 

Radford, L. (2014). Towards an embodied, cultural, and material conception of 
mathematics cognition. ZDM Mathematics Education, 46, 349–361. 
https://doi.org/10.1007/s11858-014-0591-1 

Reed, E. S., & Bril, B. (1996). The primacy of action in development. In M.L.Latash & 
M T. Turvey (Eds.), Dexterity and its Development (pp 431–451). Mahwah, NJ, 
Lawrence Erlbaum Associates. 

Resnick, L.B. (1992). From protoquantities to operators: Building mathematical 
competence on a foundation of everyday knowledge. In G. Leinhardt, R. Putnam, & 
R.A. Hattrup (Eds.), Analysis of Arithmetic for Mmathematics Tteaching (pp. 373–
429). New York, NY, Lawrence Erlbaum Associates. 

Rousseau, J.-J. [1762]. Emile or on Education (A. Bloom, Trans.). New York, NY, 
Perseus, Basic Books, 1979. 

Schegloff, E.A. (1997). Practices and actions: Boundary cases of other-initiated repair. 
Discourse Processes, 23(3), 499–547. 

Sfard, A. (2007). When the rules of discourse change, but nobody tells you - making 
sense of mathematics learning from a commognitive standpoint. Journal of Learning 
Sciences, 16(4), 567–615. 

Skemp, R.R. (1976). Relational understanding and instrumental understanding. 
Mathematics Teaching, 77, 20–26. 

Shayan, S., Abrahamson, D., Bakker, A., Duijzer, A.C.G., & Van der Schaaf, M.F. 
(2017). Eye-tracking the emergence of attentional anchors in a mathematics learning 
tablet activity. In C.A. Was, F.J. Sansosti, & B.J. Morris (Eds.), Eye-tracking 
Technology Applications in Educational Rresearch (pp. 166–194). IGI Global. 
https://doi.org/10.4018/978-1-5225-1005-5.ch009 

Sheets-Johnstone, M. (1999). The Primacy of Movement. Amsterdam, John Benjamins. 
Shvarts, A., & Abrahamson, D. (2019). Dual-eye-tracking Vygotsky: A microgenetic 

account of a teaching/learning collaboration in an embodied-interaction 
technological tutorial for mathematics. Learning, Culture and Social Interaction, 22, 
100316. https://doi.org/10.1016/j.lcsi.2019.05.003 

Shvarts, A., & Abrahamson, D. (2023). Coordination dynamics of semiotic mediation: 
A functional dynamic systems perspective on mathematics teaching/learning. In 
T. Veloz, R. Videla, & A. Riegler (Eds.), Education in the 21st century [Special issue]. 
Constructivist Foundations, 18(2), 220–234. https://constructivist.info/18/2 

Shvarts, A., Alberto, R., Bakker, A., Doorman, M., & Drijvers, P. (2021). Embodied 
instrumentation in learning mathematics as the genesis of a body-artifact functional 
system. Educational Studies in Mathematics, 107(3), 447–469.  
https://doi.org/10.1007/s10649-021-10053-0 

Shvarts, A., & van Helden, G. (2021). Embodied learning at a distance: From sensory-
motor experience to constructing and understanding a sine graph. Mathematical 
Thinking and Learning, 1–28. https://doi.org/10.1080/10986065.2021.1983691 



174 Dor ABRAHAMSON 

-  D o s s i e r  -  

Steffe, L. P., & Kieren, T. (1994). Radical constructivism and mathematics education. 
Journal for Research in Mathematics Education, 25(6), 711–733. 

Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with 
particular reference to limits and continuity. Educational Studies in Mathematics, 
12(2), 151–169. https://doi.org/doi:10.1007/BF00305619 

Tancredi, S., Abdu, R., Abrahamson, D., & Balasubramaniam, R. (2021). Modeling 
nonlinear dynamics of fluency development in an embodied-design mathematics 
learning environment with Recurrence Quantification Analysis. International 
Journal of Child–Computer Interaction, 100297 . 
https://doi.org/10.1016/j.ijcci.2021.100297 

Tancredi, S., Abdu, R., Balasubramaniam, R., & Abrahamson, D. (2022). Intermodality 
in multimodal learning analytics for cognitive theory development: A case from 
embodied design for mathematics learning. In M. Giannakos, D. Spikol, D. Di Mitri, 
K. Sharma, X. Ochoa, & R. Hammad (Eds.), The Multimodal Learning Analytics 
Handbook (pp. 133–158). New York, NY, Springer International Publishing.  
https://doi.org/10.1007/978-3-031-08076-0_6 

Tancredi, S., Chen, R.S.Y., Krause, C. M., & Siu, Y.T. (2022). The need for SpEED: 
Reimagining accessibility through Special Education Embodied Design. In 
S.L. Macrine & J. M. Fugate (Eds.), Movement Matters: How Embodied Cognition 
Informs Teaching and Learning (pp. 197–216). Cambridge, MA, MIT Press. 

Thompson, P.W. (2013). In the absence of meaning…. In K. Leatham (Ed.), Vital 
Directions for Mathematics Education Research (pp. 57–94). New York, NY, 
Springer. 

Turner, T. (1973). Piaget’s structuralism (review article). American Anthropologist, 
75(2), 351–373. 

Turvey, M. T. (2019). Lectures on Perception: An Ecological Perspective. New York, 
NY, Routledge / Taylor & Francis. 

Urton, G. (1997). The Social Life of Numbers: A Quechua Ontology of Numbers and 
Philosophy of Arithmetic. Austin, TX, University of Texas Press. 

Varela, F. J., Thompson, E., & Rosch, E. (1991). The Embodied Mind: Cognitive Science 
and Human Experience. Cambridge, MA, MIT Press. 

Verran, H. (2001). Science and an African Logic. Chicago, IL, The University of Chicago 
Press. 

Vérillon, P., & Rabardel, P. (1995). Cognition and artifacts: A contribution to the study 
of thought in relation to instrumented activity. European Journal of Psychology of 
Education, 10(1), 77–101. 

Vygotsky, L.S. [1926]. Educational Psychology (R.H. Silverman, Trans.). Boca Raton, 
FL, CRC Press LLC, 1997. 

Worsley, M., & Blikstein, P. (2014). Using multimodal learning analytics to study 
learning mechanisms. In J. Stamper, Z. Pardos, M. Mavrikis, & B.M. McLaren 
(Eds.), Proceedings of the 7th International Conference on Educational Data Mining 
(pp. 431–432). Institute of Education. 

 


