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ABSTRACT
Constructingauxiliary lines is an important component skill in solving
geometry problems, and yet it is difficult to teach, precisely because
these lines are ‘invisible’ until they are actually drafted. Is there any
intuitive resource that geometry students could possibly draw on to
develop this skill? Is there any domain of human activity where we
all naturally entertain imaginary lines, even if we are not aware of
doing this? And yet, if so, howwould these tacit imaginary lines come
forth to be geometrical auxiliary lines? It turns out that dancers spon-
taneously imagine linear structures, known as attentional anchors,
to help them enact their movements. These attentional anchors
are drawn out in the dancer’s subjective perception and are, there-
fore, invisible to others. Notwithstanding, we have used an embod-
ied design-based research framework to create a gridded floor mat
where students can render their covert dance-oriented attentional
anchors as overt geometry-oriented auxiliary constructions. Situated
in the cultural context of traditional Balinese dance, this practitioner-
oriented paper demonstrates several activities for global classroom
use byway of sharing some empirical results from implementing this
pedagogical approachwith young learners. An appendix lists a set of
additional activities for dance-based geometry exploration.
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1. Introduction

Auxiliary lines are diagrammatic elements that geometricians heuristically supplement
into their working space as a means of perceiving latent figural properties that may lead
to critical inferences towards solving problems (Palatnik & Dreyfus, 2019; Polya, 1957).
For instance, consider the following case of the Two-Rectangle Problem. The task is to
determine the area of rectangle BDEF given that the area of rectangle ABCD is 40 units
(Figure 1(a)). Granted, one could use a computational method to calculate the length and
width of BDEF. However, we could afford a more elegant solution by drawing an auxiliary
lineCX (see the red dashed line in Figure 1(b)). This strategy allows us to uncover a ‘hidden’
spatial relationship between the two rectangles, an insight that demonstrates how auxil-
iary lines can reveal important spatial connections that, otherwise, are not immediately
apparent.
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Figure 1. The two-rectangle problem. (a) Original problem:What is the area of BEDF, if the area of ABCD
is 40 units? (b) Supplementing an auxiliary line, CX, suggests new avenues towards a solution.

Figure 1 demonstrates the utility of auxiliary lines for solving geometry problems by
dividing and uniting geometric entities (Palatnik & Sigler, 2018). These lines enable us to
apply logical reasoning, eventually establishing a compelling argument, such as justifying
the alleged equivalency of the two rectangles. As such, auxiliary lines serve as valuable
tools for re-construing diagrams – seeing them anew – towards successfully resolving a
given problem.

Despite the important role that auxiliary lines play in geometrical problem-solving,
teachers encounter difficulties in guiding students to construct these lines independently
(Fan et al., 2017; Herbst & Brach, 2006). As educational design-based researchers inspired
by embodiment and radical-constructivist theorisations of human learning (Abrahamson,
Tancredi et al., 2023), we approached this pedagogical challenge – namely, ‘How should
we foster students’ skill of constructing auxiliary lines?’–by asking, in turn, ‘Are there any
everyday-life situations where students intuitively generate analog structures of these geome-
try elements?’ Our rationalisationwas that if we identified appropriate every-day situations,
wemay be able to leverage them as our instructional resource for grounding auxiliary lines
in students’ intuitive skills. Namely, we would create classroom conditions that elicit those
intuitive skills and then devise a method for formalising these behaviours as fitting the
formal norms of geometry. As such, we required some general framework for grounding
mathematical concepts in intuitive skill. As we now explain, we chose to operate within the
framework of embodied design.

Embodied design (Abrahamson, 2014), the pedagogical approach employed in our
project, is derived from the embodied cognition paradigm from the cognitive sciences,
which argues that conceptualising the world begins from experiences of physically act-
ing on the world (Johnson, 2015). Embodied designs create opportunities for students
to solve motor-control problems through engaging in sensorimotor exploration that
leads to new ways of perceiving the environment; these perceptions are then steered
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towards formalisation by way of prompting students to incorporate traditional mathe-
matical instruments into their movement strategies. As such, students can first experience
a concept through bodily engagement with the environment and only later appropriate
mathematical resources as means of enhancing the enactment, evaluation, or explanation
of their embodied strategies (Abrahamson, Nathan et al., 2020).

Our quest for an embodied design that would support students in developing the skill
of constructing auxiliary lines led us quite serendipitously1 to investigate the literature
on dance pedagogy, which affirms that dancers frequently create imaginary figurative ele-
ments that they ‘see’ around them to navigate space and facilitate the precise execution of
their dance movementss (Clark & Ando, 2014; Movement Research, 2012). Further, Hutto
and Sánchez-García (2015) coined the notion of attentional anchors – perceptual resources,
such as imaginative linear constructions, that assist individuals in enactingmovements, for
example, imagining a tall rectangle guides the juggling of balls. A specific example of using
attentional anchors in dance occurs in Gambuh, Balinese traditional dance-drama. Gam-
buh is usually performed on a rectangular stage area surrounded by bamboo fences called
kalangan, which is decorated with typical natural and cultural elements, like greenery,
lances, and two umbrellas, each on the right and left of the entrance. In turn, these decora-
tive elements serve also as points of reference for the dancers (Bandem, 1978). Instructors
scaffold dancers’ visual and physical orientation to kalangan elements, for instance, by
prompting the students to ‘find the (right/left) umbrella’ (Panji, 2020; Suteja, 2024). Here,
the umbrella functions as an attentional anchor, a sensory information structure whose
apprehension facilitates movement. This function of attentional anchors in dance, namely
restructuring the dancer’s orientation to the sensory information in their environment
so as to promote the effective enactment of their practice, parallels the role of auxiliary
elements in geometry, namely bringing forth latent linear configurations to enable the
appreciation of relations that promote a solution to a given problem.

Unsurprisingly, therefore, the construct of attentional anchors was imported from the
philosophy of movement science to research on mathematics education, when Abra-
hamson and Sánchez-García (2016) employed the construct to theorise the perceptual
behaviours of students who, like dancers, solve motor-control problems by suddenly ‘see-
ing’ linear structures that will later lead to conceptual insight. Some previous examples of
mathematical tasks that implicitly invite students to create attentional anchors as a means
of reducing complex coordination problems into more manageable tasks can be seen in:
(a) the Mathematics Imagery Trainer activities, which challenge students to enact a tar-
get bimanual movement that maintains invariant some figural, relational, or quantitative
property they thus learn (Abrahamson, Trninic et al., 2011); and (b) the collaborative
construction of body-scale polyhedra, such as an icosahedron, where students experience
attentional shifts towards simple embedded forms, such as triangles (Palatnik, 2022).

This paper introduces dancing geometry, a module of mathematics activities that imple-
ment the embodied design framework as situated within culturally authentic practice and
using only non-digital material resources. Specifically, we designed a novel learning envi-
ronment that integrates Balinese traditional dancemethodologywith formalmathematical
discourse. As in all action-based embodied-design activities, dancing geometry first solicits
students’ attentional anchors that enable their coordinated performance of complex move-
ments and only then guides students to signify these attentional anchors mathematically
(Abrahamson & Trninic, 2015). We are not the first scholars to explore Balinese dance’s
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underlying ethnomathematical structures, such as precise geometrical forms inherent to
the dancers’ postures and movements (Dewi et al., 2022; Radiusman et al., 2021). How-
ever, we may be the first educational researchers to leverage and evaluate the pedagogical
potential of these choreographic routines.

Whereas Balinese dance traditionally comprises numerous gestures, stances, andmove-
ments performed simultaneously by different body parts, thus requiring expert skill, our
current design employs only very basic dance elements from this tradition and, as such,
could be used globally and by individuals with varying levels of dance experience. Notwith-
standing, inviting students to perform these basic postures rigorously is expected to foster
the construction of attentional anchors. In summary, this paper presents a novel activity
designed to introduce students to geometry content through dance experiences. Specif-
ically, the activity elicits students’ perceptions for movement while offering resources to
objectify these implicit attentional anchors as explicit auxiliary lines as they solve a series
of Balinese dance tasks.

Themathematical conceptswe aim to develop through the activity are related to the con-
cept of angle. Through the designed activities, students will work on constructing auxiliary
lines tomeasure and justify an angle and later use them to classify two-dimensional objects.
We chose angle as the exploration content due to the various challenges of teaching and
learning angles in elementary school. For instance, young students struggling with angle
conservation thought that applying a transformation to an angle (e.g. rotation) changes its
aperture (Bütüner & Filiz, 2017; Devichi & Munier, 2013). Referring to NCTM geometry
standards for Grades 3–5, our designed activities target students’ analysis and reason-
ing skills in geometry, inviting them to investigate geometrical objects’ characteristics,
properties, and their relationships (NCTM, 2000, 3.G.1, 4.G.1–3, 5.G.3–4).

In the remainder of this paper, we explain the resources we created for students to
ground the formal geometrical practice of building auxiliary lines in the naturalistic dance
methodology of imagining attentional anchors. For each activity, we elaborate on the the-
oretical background of the design and how it is connected to the teaching and learning of
specific targeted mathematical concepts. Using photographs and transcriptions extracted
from video data – which we collected while implementing the activity with Grade 5 stu-
dents in Bali, Indonesia, and California, United States – we will demonstrate how children
have collaboratively used our resources to transition from dance to geometry and, in turn,
think geometrically about new dance moves. An appendix will spell out suggestions for
geometry teachers to use the resources in their classrooms. Whereas we worked with Bali-
nese children who are familiar with the basic vocabulary of their heritage choreographic
tradition, teachers operating in other indigenous and diaspora cultural contexts, whether
historical (e.g. ballet, square dance) or contemporary (e.g. hiphop), could plausibly modify
our suggested activities to fit their movement traditions and geometrical explorations.

2. Design solution

Figure 2 features GRiD (Geometry Resources in Dance), a diagrammatic floor mat
designed to serve mathematics students as a material platform for bridging together from
dance to geometry and back again. In our study, we conjectured that students’ intuitive
ability to produce attentional anchors as movement solutions in Balinese dance practice
could be tapped to train them to construct auxiliary lines as geometry solutions.
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Figure 2. GRiD’smaterial components (graphic artwork:MadeAriawan). GRiD comprises a griddedmat,
markers, stickers, highlighters, straws, connectors, yarn, pipe cleaners, and elastic bands. Students are to
use these resources as theirmeans of objectifying attentional anchors,which they implicitly use in dance,
as auxiliary lines that they explicitly use in geometry.

GRiD’s mat dimensions can range from 1 m×1m to 1.5m×1.5m to accommodate
either individuals or groups of up to four individuals at a time. To prolong its use, the mat
may be covered with transparent plastic. Various accessories, such as colourful markers,
dot stickers, colourful yarns, and construction straws with connectors, pipe cleaners, and
elastic bands can be utilised to facilitate exploration, discovery, and discussions.

The next section of this paper presents in detail three sample dancing-geometry activi-
ties from the Balinese context to explain their global mechanism as educational opportuni-
ties.We propose a design that provokes andmediates perspectival conflicts as amedium for
students to learn the targeted mathematical concepts in which auxiliary lines are utilised.
We also demonstrate how these activities might be used in the classroom by presenting
some of our participant fifth graders’ spontaneous solutions to individual and collabo-
rative movement problems. The appendix of this paper elaborates on the sequences of
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activity and the suggested prompts and questions for interested teachers to implement in
their classrooms.

2.1. Activity 1: justifying a ninety-degree angle

The activity is rooted in themost basic posture of Balinese traditional dance, the feet config-
uration Tapak Sirang Pada (TSP): heelsmeet, feet rotated out, creating a form that would be
described in Euclidean geometry as a ninety-degree angle or an orthogonal linear relation.
The task is for students to enact the position, evaluate whether their feet are configured at
90◦, and explain their reasoning. The follow-up for the activity is for students to step to
different locations (forward, backward, to the side) and create the TSP again. Students are
asked to explain how they recreate the form in other places and directions.

A key challenge of this activity stems from a perspectival conflict between tradi-
tional textbook presentations of 90◦, namely, as perceived from a third-person perspective
(‘L-shaped’, Figure 3(a)), and the embodied dance presentation, as created by the feet,
as perceived from a first-person perspective (‘V-shaped’, Figure 3(b)). Cognitive analy-
sis of this perspectival conflict suggests an epistemic asymmetry between the embodied vs.
text-book presentations, where the V-shape is grounded in naturalistic yet unarticulated
sensorimotor schemes, while the L-shape is familiar as a cultural icon of ninety-degree
concept image (Vinner & Hershkowitz, 1980) yet does not evoke any such scheme. Gerof-
sky (2011) has juxtaposed these two types of perspectives, respectively, as ‘being’ (internal,
egocentric) vs. ‘seeing’ (external, allocentric) vs., with the former statistically correlated
with deeper mathematical understanding. At the same time, previous studies have found
that students struggle to recognise a ninety-degree angle when it is not presented in the
canonical L-shaped form (Bütüner & Filiz, 2017; Devichi & Munier, 2013). The instruc-
tional challenge thus becomes, Can we create conditions for students to recognise the
V-shape formation as 90◦? That is, could we possibly guide students to perceive the
V-shape as a figural variant on the L-shape that maintains its geometric property of angle
magnitude?

Figure 3. Two perceptual perspectives on a right angle. Geometry textbooks typically present a right
angle as L-shaped, with orthogonal horizontal and vertical rays (3a), whereas, dancers perceive it
as V-shaped, with the feet-rays extending diagonally. (a) Text-book presentation. (b) Dance-based
embodiment.
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Transcript 1. The traces of invisible lines.

Note: Thephotographs showAnna’s feet as seen fromabove,withher handoccasionally highlighting features of her posture.

As educational designers, we approach documented learning challenges by analysing
their cognitive underpinnings and, in turn, ideating novel instructional responses that
include dedicated activities with new material resources (Collins, 1992). In particular,
we wondered whether the didactical dance context of geometrically choreographed physi-
cal movement on the GRiD mat might create unique pedagogical opportunities for students
to appreciate the V-shaped linear configuration as 90◦ by somehow reconciling its appar-
ent perspectival conflict with the more familiar L-shaped configuration. The cognitive work
of this V-vs.-L reconciliation, we further conjectured, could involve students in reflect-
ing over their own perceptual experience of perspectival conflict as well as through
logical–deductive operations that draw on their geometrical knowledge.

The execution of TSP, as is the case with all Balinese dance postures,must bemeticulous.
Dancers studiously appraise their postures for accuracy, and they are accountable to their
teachers for their method of ascertaining the quality of executing these postures. As such,
asking students to justify the adequacy of their TSP posture elicits their pre-articulated
personal references, whereby other students could follow their reasoning. Consider the
following Transcript 1, in which a student, pseudonym Anna (A), spontaneously invokes
horizontal and vertical auxiliary dance lines to argue that her feet constitute angle bisec-
tors of two abutting right angles. Thus, a ‘not-much-here’ foot posture quickly becomes a
learned geometric exposition. . .

When Anna was presented with the GRiD tarp (see Figure 4), she immediately referred
to its indicated GRiD lines as constituting the imaginary dance lines she had invoked in
explaining her posture (compared to Transcript 1). She then placed three dot stickers on
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Figure 4. Anna’s GRiD construction of auxiliary lines to justify her TSP posture. Anna constructed a
system of auxiliary lines (yellow and blue) and points to overtly show the covert lines she uses to eval-
uate her dancing posture. The green lines mark the direction of her feet as diagonal to the auxiliary
lines. The dot stickers respectively mark the positions of her heels (red) and toes (pink and orange). The
gray arcs indicate Anna’s incarnation of a 90◦ angle formed by two 45◦ angles, as in her explanation in
Transcript 1(d)–(e).

the tarp (see Figure 4(a)) to mark the respective locations of the junction of her heels (one
sticker) and the tips of her toes (two other stickers). Anna then drew lines connecting the
single heel sticker to the two toe- stickers (see Figure 4(b)); the lines, as Anna explained,
thus came to indicate the angle rays (see Figure 4(c)).

Per our embodied design objective, Anna spontaneously recognised GRiD embedded
utilities for enhancing the enactment, evaluation, and explanation of her TSP performance.
In adopting GRiD resources as frames of action and reference, Anna implicitly appropriated
the formal mathematical practice of geometrical argumentation, where overt auxiliary lines
materialise her covert attentional anchors. Once Anna’s attentional anchors became aux-
iliary lines, Anna and the researcher were on the same page, literally, where they could
engage together in geometric reasoning about the dance posture.

2.2. Activity 2: understanding square as a special case of rhombus

The following activity involves physical actions and geometrical reasoning that elaborate
on the TSP activity, above, and so it would be advisable to beginwith the TSP activity before
advancing to this one.

Once students are confident in performing TSP and justifying their posture, assign
them to pairs. Ask them to stand face-to-face, so that the ends of their toes meet, cre-
ating a quadrilateral (see Figure 5). Students’ task will be to reason about the shape of
this four-feet configuration. Whereas students’ foot size naturally varies across the class-
room, teachers can ask students to ignore these differences and, instead, assume the four
lengths are identical. Under circumstantial contexts where students engage in this activity
individually, such as a student who is participating remotely through video-conferencing,
the teacher could ask the student to create a new TSP that faces their previous TSP from
Activity 1.

Similar to Activity 1, here again we highlight a conceptual difficulty caused by percep-
tual capacities and traditions. Just as in the case of L-shaped vs. V-shaped right angles,
here students will likely be more familiar with the image of squares in their cardinal
standing-on-an-edge orientation (vertical and horizontal edges) than the rotated standing-
on-a-vertex orientation.We conjectured that students would debate over the identity of the
shape – whether it was a rhombus or a square – depending on their angle of sight. As such,
the quadrilateral is a perspectively ambiguous form (cf. Abrahamson, 2019). We hoped to
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Figure 5. Configuration of two TSPs. Student 1’s heels meet at Point B, and Student 2’s heels meet at
Point D. The two students’ toes meet at Points A and C. Their foot lengths (yellow lines) are taken as
equivalent. From Activity 1, it is known that∠ABC and∠ADC are right angles.

facilitate a logical resolution of this perspectival ambiguity, whereby a square is a rhombus
with right angles. As such, a pedagogical heuristic underlying this activity is for students
to appreciate the epistemic power of geometric argumentation to resolve apparent con-
flict. Attention to the constituent properties of an object, such as its angles, can challenge
a classification based solely on appearances and perceptual habits.

Moreover, we hoped that the social context of these activities would enhance individ-
ual students’ reflections and geometrical proving through what Schwarz and Baker (2017)
call collaborative argumentation – respectful and supportive collective logical inquiry. The
social context of peer inquiry, we surmised, could offer unique affordances for recon-
ciling perspectival construals of the linear configuration as square vs. rhombus, because
these vying perspectival orientations could be distributed over two or more students, thus
constituting the two perspectives as simultaneous (you and me at the same time) rather
than sequential (me and then me again). That is, the linear configuration would become
a socially distributed ambiguous figure (I see duck while you see rabbit; (Abrahamson,
Bryant et al., 2009; Benally et al., 2022). Consequentially, we further conjectured, the con-
flict could be heightened and honed as a logical paradox that, in turn, might be resolved
when each participant endorses the veracity of their peer’s contemporaneous view (Gopnik
& Rosati, 2001); the conflicted views could thus be experienced as necessarily comple-
mentary rather than mutually exclusive. In summary, our design approach is to identify,
analyse, and then deliberately elicit students’ perspectival conflict, which has impeded their
learning, as a productive opportunity enabling learning, by creating structured instruc-
tional conditions, includingmaterial, purposeful, and social resources, that foster students’
reconciliation of these tensions (Abrahamson, 2014; Abrahamson &Wilensky, 2007).

When working on this problem, Anna initially saw a rhombus, and then later, she saw a
square. As Transcript 2 details, Anna proposed a geometric condition of squareness: Given
that all four edges of the quadrangle are equal, then the shape is square iff all its four angles
are also equal. However, as you will see below, it took Anna some time to finally convince
herself that, indeed, all the angles are equal. After a while, Anna performed the embodied
reasoning of enacting each of the four angles with her feet in TSP to argue that they were
all right angles. We now join Anna, as she begins to reconsider her assertion that the shape
is a rhombus but not a square.
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Transcript 2. Embodied reasoning: combines enacting and inscribing geometry.

Following her strategy in Transcript 1, Anna has established a new, embodied mea-
surement tool serving her geometric argumentation: her feet’s figural construction in
performing TSP. Since she had previously constructed a valid argument that her TSP opens
at ninety degrees (Figure 4), she evaluated the other angles by showing that she could
perform TSP there as well.

Whereas students’ analysis of the TSP geometry in Activity 1 then served them in Activ-
ity 2 to argue that the double-TSP is a square, we found that collaborating students might
self-initiate this problem of the square while still in Activity 1. Here, Merry (M), Nath (N),
Owen (O), and Philip (P), and Ratih (R, the researcher/teacher) spontaneously investi-
gated the case of two TSPs. It started with Nath’s proposal that to justify his TSP, he checks
on a rhombus configured by connecting his TSP with a point opposite to his heels. To
help other students follow Nath’s idea, Ratih asked Philip to stand in the position Nath
was referring to, followed by Merry and Owen in their respective places (see Figure 6). As
such, they worked on the problem still before they had established that TSP forms a right
angle, thus unwittingly leading them to face the square-vs.-rhombus dilemma. . . , only to
raise the question of whether each TSP is a right angle.

Finding themselves in a bootstrapping situation, where they needed to justify a single
TSP’s angle to determine the double-TSP shape, Merry realised that different points of
view lead to different perceptions of the same object, so that conflicted inferences might
be resolved (compare with situation of ambiguity when solving spatial geometry problem,
Palatnik & Abrahamson, 2022). She conveyed her reasoning to her group members, as
Transcript 3 recounts.

In Transcript 3, Merry proposed a strategy to perceive the angle differently by chang-
ing her point of view (3a). Nath and Philip initially rejected her idea (3b), but later,
Owen confirmed it (3c–d). The perspectival conflict, as is shown in Transcripts 2 and 3,
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Figure 6. The group configured the 2 TSPs next to each other. Nath paired with Philip (6a), and Merry
paired with Owen (6b). Points A marks the heels” meeting point, respectively of Philip (6a) and Owen
(6b), and Points C – for Nath (6a) and Merry (6b). Nath’s and Philip’s toes met at Points B and D (6a), as
did Merry’s and Owen’s (6b). All of their feet’s lengths (blue lines) are taken as equivalent.

Transcript 3. Different perspectives lead to different perceptions.

is a crucial learning moment, because it creates for the students an intellectual need
(Harel, 2013) for more rigorous reasoning to justify their claims regarding an angle’s mea-
sure. Apparently, students may believe that an angle is either acute or right depending
on one’s point of view. In Piagetian terms, one might say that they have not yet con-
served the angle (cf. Piaget, 1941) with respect to the parameter of orientation. As we
shall see, this epistemic quandary may offer an auspicious learning opportunity for stu-
dents engaged in mutually respectful collaborative argumentation. Figure 7 offers one
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Figure 7. Possible further argumentswithGRiD to justify that TSP forms a right angle: (a) adjustingone’s
visual perspective (black arrow) to maintain an orthogonal construal of the L-shaped right angle and
further arguing that its measure derives from being half a straight angle; and (b) maintaining the centre
perspective to construct two right angles (to the left and right of the vertical axis), where each foot (blue
diagonal lines) serves as the bisector of its respective right angle, thus entrapping a 45◦ angle with the
vertical axis; together, these two 45◦ angles form a right angle.

possible resolution of this quandary using GRiD’s affordances, as viewed from a student’s
perspective.2

The auxiliary lines (pink dashed line) in Figure 7 performed a function to allow students
to use a known result (Palatnik & Sigler, 2018), i.e. half of 180◦ (7(a)) or two times the half
of 90◦ (7b). Having successfully justified that their TSP’s aperture measures as a 90◦ angle,
the next step was for students to likewise investigate other angles on the constructed shape.
Whereas each student had felt confident that the angle at their heels is 90◦ (recall Figure 6,
∠BAD and∠BCD, they had yet to evaluate the anglewhere their toesmeet (Figure 6,∠ABC
and ∠ADC).

Tackling the problem, Nath (N) employed his straw construction3 to prove that all
four angles of the quadrangle are equal. Nath’s peers followed his proof construction
(Transcript 4(a)–(d)), correcting his momentary confusion over the angle orientation
(Transcript 4(e)–(f)). In the interest of clarity for the purposes of this exposition, we have
superimposed red lines and a yellow circle on the transcript images of Nath’s original straw
construction.

In Transcript 4, Nath began his argumentation by invoking the geometric structure
of Philip’s TSP at the location where it had been performed. Nath then attends to the
unknown toe-to-toe angles. Using his plastic construction straws, Nath argued that the
toe-to-toe angle is congruent with the heel-to-heel angle. Noting that Nath had thus
accounted for three of the four-footed quadrangle angles – Philip’s heel-to-heel angle and
the two Nath–Philip toe-to-toe angles – but not yet for his own heel-to-heel angle, the
researcher challenged Nath to further examine whether those three angles were congruent
with his own TSP. The prompt was intended to probe the students’ budding perspectival
fluency in perceiving the same angle from different orientations. Yet, whereas Nath cor-
rectly pointed to the original location of his feet (see Transcript 4d), he placed his straw
construction elsewhere (cf. Transcript 4e). Soon, Nath’s peers Philip and Owen, who had
been following his argumentation, called out Nath’s error and helped him amend it by
offering monosyllabic verbal evaluations ‘no’ and ‘yes’ (see Transcript 4(e) and (f)), and
then Mary manually moved the straws to their correct place and in the correct orientation
(Transcript 4(f)).
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Transcript 4. Straw construction as a measurement tool.

Further, we can see howNath uses his straw construction as ameasurement tool to argue
that all four angles in the quadrangle are equal. Nath’s situated geometrical reasoning is
similar to Anna’s strategy (see earlier in Transcript 2) – using one’s feet as a measurement
tool, an embodied yardstick of sorts, to compare angles across locations, specifically to
negotiate the perspectival conflict of perceiving the right angle as L-shaped vs. V-shaped.
Moreover, both students used supplementary semiotic devices – markers (Anna) and
straws (Nath) – to extract an imprint of the feet onto the environment. Still, the straw
constructionwith the right-angle joiner offers a technical ergonomic advantage overmark-
ing the angle, by virtue of the constructions’s material affordances for rapidly and reliably
translating the angle across locations without changing one’s posture or perspective.

2.3. Activity 3: an angle’s aperture is independent of the length of its rays

As students nowunderstood that the orientation of an angle does not change themagnitude
of its aperture, we moved forward to emphasise that the angle’s aperture does not depend
on the length of its rays, either. Taking once again the Piagetian perspective, we now turn
to support students’ conservation of angle measure with respect to the parameter of ray
length. Both of these conservation parameters, while appearing trivial to mathematically
informed individuals, are far from trivial to pre-conservational students. Many elemen-
tary school students believe the angle rays’ lengths impact the angle’s measure (Ozen Unal
& Urun, 2021; Sari et al., 2021).

To explore the relation between an angle’s ray-length and measure, we invited students
to work on a hypothetical situation in which someone with longer feet than them wishes
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Figure 8. Determine the position of an unknown point with the help of auxiliary lines. Given points X
and Y (a), find Point Z such that∠YXZ is 90◦, where Lengths XY = XZ. Solving this problem requires the
construction of auxiliary lines triangulating both X and Y , otherwise Z could be in incorrectly placed (as
in 8(b) or (c)). The correct position of Z is achieved when two auxiliary lines, XY and XZ, are intersected
(c). Moreover, the lengths of angle rays XY and XZ are greater than in the earlier Activity 1 and 2 (Figure 5
and 6), thus creating opportunities for students to appreciate that an angle’s measured aperture (here,
90◦) is conserved over variation in ray length.

Transcript 5. The construction of auxiliary lines with two reference points.

to perform the TSP position. The first part of the problem asks where the right toe should
end (Z), given the location of the heels (X) and left toe (Y) on the mat (Figure 8(a)).
To determine the position of Z, students need to use both X and Y as reference points
(Figure 8(b)–(d)) and then determine ameans of copying LengthXY onto an appropriately
angled ray trajectory from X to find Z.

Transcript 5, narrates howNath and Philip independently constructed an auxiliary line,
even as they used different reference points, which led to different proposed locations for
Z. The photo imagesmaintain the same notation systems for PointsX andY as in Figure 8.
Immediately below each photo image is a ‘cleaned up’ schematic illustration of the geomet-
ric construction, to simplify the reader’s interpretation of the rich GRiD information that
includes residual markings from the previous inquiry.

Working on this problem, students need to be able to construct their auxiliary line from
Y to Z because it is not available on the GRiD (compared to, for instance, the line that
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connects points A and C in Figure 6). As such, we challenged students to go beyond what
is already made available by the GRiD’s lines. In addition, recalling Activity 1, students
realised that Z has to be equidistant from X as Y is from X, because the two feet of our
hypothetical long-footed person are equal in length. The line XZ, which represents that
other foot, serves as an auxiliary line that helps determine the position of Z.

As evident in Transcript 5, Philip and Nath arrived at different proposals for locating
Z (5b). Whereas they both traced the horizontal line from Y (5(a)) with respect to the
orientation of TSP as shown by the black arrow (simplified illustration, 5(a)–(c)), Nath ref-
erenced back toX, as evident in the video data, coincidingwith a short pause he took before
continuing his hand motion towards the red dot position (5(b) and (c)). Therefore, rather
than letting the auxiliary line stop at any non-specific location (e.g. as Philip proposed, see
Transcript 5(b)), Nath was convinced that Z’s position should be unique (Transcript 5(b)
and (c)). Examining Nath’s answer, Philip apparently realised that he, too, should use X as
another reference point to triangulate the position of Z (Transcript 5(c)).

Having determined Z’s correct position, students were then asked to inquire whether
the feet in Figure 8 also configure a 90◦ angle, a question that some students were still con-
sidering. Recall that in Activity 1 students had devised a measurement tool to investigate
TSP angles. This tool, whose raysmay fall short in the new context of the hypothetical long-
footed dancer, might be reintroduced now back onto GRiD as a handy means of reflecting
together on relations between ray lengths and angle measures, ultimately supporting the
conservation of angle amidst the ray-length parameter.

3. Summary

Auxiliary lines are useful diagrammaticmeans of solving geometry problems, because they
invoke ‘hidden’ structural properties of the problem space conducive to the solution of
construction or proof problems (Palatnik & Dreyfus, 2019; Polya, 1957). Responding to
students’ documented difficulty with building contextually useful auxiliary lines (Gridos
et al., 2022; Wang et al., 2018), we created GRiD, a novel, low-cost diagrammatic floor mat
designed to situate geometry studies in traditional ethnic movement practices.

Our evaluation studies of GRiD are leading us to believe that it can serve as a useful
support for students to experience the purposeful construction of auxiliary lines. The first
activity encouraged students to generate auxiliary lines to measure a right angle. The sec-
ond activity prompted students to build auxiliary lines for recognising objects and arguing
angle conservation. The third activity led students to employ auxiliary lines as a construc-
tion tool. In general, as we demonstrated through three exemplary activities, GRiD creates
structured opportunities for students to experience, reflect on, represent, and discuss their
imaginary perceptual construction of geometric structures, thus learning through invoking
and socially reconciling perspectival tensions. As they enact dance movements and solve
choreographic problems onGRiD, studentsmaterialise their tacit movement-oriented per-
ceptual structures (attentional anchors) in the form of auxiliary lines that they gesture,
name, trace, mark, and construct, thus meaningfully and collaboratively engaging in sit-
uated geometric argumentation. Throughout the activity, the negotiation of perspectival
conflict is mediated by embodied reasoning, where students engage spontaneously in mul-
timodal collaborative argumentation, using their body, hand gestures, verbal language,
drawings, and tinkering with available resources.
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Formal geometrical reasoning can be rooted in traditional dancing practice through
solving movement activities that gradually shift students towards mathematical discur-
sive registers and, vice versa, use mathematical reasoning to improve dance practice. To
optimise classroom results, we recommend that teachers encourage and endorse students’
multimodal informal communications, and not only formal mathematical utterances,
by immersing students at once in the equally experiential worlds of both dance and
mathematics.4

Notes

1. This adverb is apt: an etymology of the word will lead us to a Renaissance romance about
Serendip, originally Sri Lanka, and yet our own tale will soon arrive at another island in
South-East Asia.

2. A future publication coming out of the first author’s dissertation research project will detail
how a group of students developed this proof, assisted by their teacher. Here we mention this
line of reasoning anecdotally only to illustrate GRiD’s versatile mediation of auxiliary lines for
geometric argumentation. As they facilitate this activity, teachers may wish to walk around the
mat so as to view it from the unique perspective of each student, so that they can scaffold each
student’s unique reasoning.

3. During their attempt to solve the dilemma of ‘squaring the rhombus’ (see Transcript 3), each
student had placed two straws on themat tomark the position of their TSP. Nath took the action
further by creatively connecting his two straws at their vertex using a connector, thus creating a
portable straw construction. Later, all the other students imitated Nath’s straw construction by
using a provided connector.

4. Please refer to Appendices for additional recommended activities and facilitation ideas.
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Appendices

Appendix 1. Activity 1: Ninety-degree angle

A.1 Description

The activity is rooted in the primary feet’s configurations in the Balinese traditional dance called
Tapak Sirang Pada (TSP): heels meet, toes open to the corner, creating a ninety-degree angle. The
task is for students to enact the position, evaluate if their feet are opened at a ninety-degree angle,
and explain their reasoning.

A.2 Students’ organisation

• Individual
• Individuals in pairs or groups of four

A.3 Learning trajectories
No. Instruction Possible solution

1. On GRID, ask students to perform a 90-
degree angle feet position. Ask them if they
are confident in their foot configurationand
why or why not.

Heels together, and toes open to the corner.

2. Ask students to mark their feet position,
preferably with dot stickers.
If the sticker placement is not exactly on the
GRiD points, ask students to check they fol-
low the TSP rules correctly: heelsmeet, toes
open to the corner.

Students place three stickers: one for the point where their heels
meet and one for each of the ends of their toes.

(continued).

https://movementresearch.org/publications/critical-correspondence/william-forsythe-in-conversation-with-zachary-whittenburg/
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No. Instruction Possible solution

3. Ask students to draw their feet’s lines with
markers.

Students draw lines from the sticker that represents their heels to
each of the other stickers that represent the end of their toes.

4. If they are inpairs or groups, students evalu-
ate each other: Do they open their feet sim-
ilarly? Why or why not? How do we ensure
everyone opens their feet similarly?

They observe each other from their position.

(continued).
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No. Instruction Possible solution

They observe each other by moving around and using their feet to
check the stickers’ placement of their friends.

5. Ask students why they think they do the
foot configurations correctly at a 90-degree
angle.

Students will adjust their heads or bodies to perceive the L-shaped
ninety-degree.

(continued).
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No. Instruction Possible solution

Students will create auxiliary lines to help them reason about a
ninety-degree angle.

6. Ask students to take one step forward and
perform TSP in a new location. How would
they justify if their posture is correct?

(continued).
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No. Instruction Possible solution

7. Repeat step 6 in various directions: back-
ward, to the right, and the left side. The
number of steps can be adjusted based on
the availability of space.

Appendix 2. Activity 2: square is a special case of Rhombus

A.4 Description

The activity elaborates on TSP feet’s configurations. The task is for students to create TSP in pairs on
GRiD, face-to-face, and let the ends of their toes meet. They will need to reason about the shape of
their feet’s configuration. The main challenge of this activity also relies on the perspectival conflict
of seeing ‘rhombus’ or ‘square’, which leads them to reason mathematically about characteristics of
geometrical objects, i.e. a square is a rhombus with equal angles.

A.5 Students’ organisation

• Individual
• Pairs
• Pairs in groups of four
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A.6 Learning trajectories

No. Instruction Possible solution

1. On GRID, ask two students whose feet sizes
are relatively equal to perform a 90-degree
angle foot position face-to-face, with the
ends of their toes met. Ask students to put
stickers. Ask students to say the nameof the
shape they constructed together.

Students use dot stickers to indicate their positions.

2. Ask students to draw the feet’ lines. If their
soles are not equal in length, we can ask
them to assume the lengths are the same
and place the stickers accordingly.

The equal sides are clear from the assump-
tion given in the problem. What about the
angles?

Students draw diagonal lines using markers or make them with
construction straws or yarns or elastic bands to represent their feet.

(continued).
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No. Instruction Possible solution

Since it has all equal sides, studentswould probably call the shape a
rhombus or diamond if they look at it from the centre or align with
their orientation when they are standing. Some probably say it is a
square if they look at it from the corner.

3. Ask them again to convince you about the
shape that they think they created together.

Can the same shape change just because
you see it from a different angle? If not,
what is the real shape they are constructing
together?

Some students might try to justify the other angles of the con-
structed shape.

(continued).
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No. Instruction Possible solution

One possiblemethod is to use similar reasoning towhat they did to
work with the problem in Activity 1.

After realising that the shape has equal length and equal angles,
students can conclude that it is a square.

Appendix 3. Activity 3: angle and its arrays

A.7 Description

This activity can take place before or after Activity 2. Still elaborating on TSP feet’ configurations,
the task is for students to predict the location of the end of one of the toes, given the position of the
meeting point of the heels and the end of another toe. Students will work in a hypothetical situation
in which someone whose feet are longer than theirs also wants to learn the TSP position.

A.8 Students’ organisation

• Individual
• Pairs
• Pairs in groups of four
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A.9 Learning trajectories

No. Instruction Possible solution

1. Place a new sticker on the GRID. Tell a story
about someonewith longer feetwhowants
to perform the TSP position. Place another
sticker and tell them that this is where the
other person’s left toe ends. Let them know
in which direction this hypothetical person
is performing TSP.

2. Ask students to place a sticker to indicate
where that person’s right toe ends.

(continued).
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No. Instruction Possible solution

3. Ask students to draw the lines where that
person’s feet would be.

4. Ask students to explain if they think this
hypothetical person also opens their feet
like them, or in other words, at ninety
degrees.

5. Ask students to find the position of this per-
son’s partner if they have the same length
of feet and want to create a square with
their TSP.
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