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A group of 5 pre-service teachers engaged in constructing and exploring a body-scale icosahedron 

model. Triangulating audio–video and mobile eye-tracking data, we analyzed the roles of motor 

actions and sensory perceptions in the emergence and propagation of geometrical insight. We present 

an exemplary episode where Gail multimodally expresses a valid argument for finding the 

icosahedron’s half-height. Another participant’s eye-tracking data revealed that his perception of 

Gail’s manual actions helped him interpret and then replicate non-verbal features of her argument. 

The study contributes to our understanding of embodied cognitive processes in authentic educational 

contexts, particularly the role of perception–action engagement with concrete media in collaborative 

mathematics tasks. Teacher awareness of these perceptuomotor micro-processes might enhance the 

pedagogical efficacy of integrating embodied activities into classroom geometry instruction. 
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Introduction 

There has been growing interest in 4E (embodied, enactive, embedded, and extended) approaches to 

mathematical learning, particularly in geometry (e.g., Abrahamson et al., 2020). These approaches, 

unlike traditional ones, emphasize physical interaction and sensory experiences in developing 

mathematical understanding. Geometry—a study of shape and space, where spatial visualization and 

reasoning are vital components of learning—is particularly amenable to the pedagogical 

implementation of these approaches. Through manipulating physical models, moving around and 

through the models, measuring them, and using various gestures, learners engage in embodied 

argumentation, a collaborative process where action-based experiences are integral for reasoning and 

proving (e.g., Palatnik & Abrahamson, 2022; Walkington et al., 2018). 

This paper introduces the concept of embodied argumentation—a form of mathematical 

argumentation in which learners use physical actions, such as interactions with objects, as well as 

gestures, to construct, support, and communicate mathematical proofs and explanations. The 

empirical context of the investigation is a geometric task involving the collaborative construction of 

a human-sized Platonic solid followed by exploring its global features, such as determining its total 

number of vertices. Drawing on insights from gestural reasoning, collaborative problem-solving, and 

Proofs Without Words (PWW, Marco et al., 2022), this study examines how pre-service teachers use 

their bodies, physical interactions with the model, and gestures to develop and communicate 

geometric arguments. The goal of this research is to contribute to the field’s understanding of how 

embodied cognition manifests in collaborative mathematical argumentation and to investigate the 

educational potential of integrating embodied activities into geometry instruction. 
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Theoretical Background 

The late David Tall suggested that mathematical reasoning evolves through three worlds: the 

embodied, the symbolic, and the formal–axiomatic world. The embodied world, where learners use 

physical interactions and sensory experiences to grasp mathematical concepts, provides the 

foundation for math before transitioning to symbolic and formal reasoning (Tall, 2003). One of the 

examples presented by Tall (2003) shows a Proof Without Words (PWW) on the sum of the n first 

integers as the manipulation of pebbles (embodied), then proof by arranging a sum of two lines of 

numbers, one of them in reverse order (symbolic), and finally proof by induction (axiomatic). Tall 

noted that the first two proofs have “clear human meaning, the first translating naturally into the 

second. The induction proof, on the other hand, often proves opaque to students, underlining the gap 

that occurs between the first two worlds and the formal world” (p. 8).  

Embodied cognition posits that human thinking is deeply rooted in physical interactions with the 

environment (e.g., Barsalou, 2008). In mathematics education, this framework has supported claims 

that learners engage with concepts through gestures, movement, and manipulating physical objects: 

moving in a new way by perceiving in a new way and then naming in a new way (Palatnik et al., 

2023). This embodied view is especially valid in geometry, where physical interaction with geometric 

figures, such as objects and diagrams, is inseparable from understanding (Herbst et al., 2017).  

An embodied approach to geometry instruction aligns with research suggesting that embodied 

reasoning can support the development of geometric understanding. Nathan et al. (2021) emphasize 

that intuition and insight in geometry often arise through embodied experiences, such as gestures, 

that allow learners to transition from informal exploration to more formal proof. Their study provides 

evidence that dynamic depictive gestures, which involve motion-based transformations of 

mathematical objects (e.g., dilation or rotation), significantly support the production of valid proofs, 

whereas static gestures are less effective in fostering mathematical generalizations necessary for 

proofs. Other studies investigating learners interacting with physical models—such as 3D geometric 

shapes—show they gain insights through bodily movements (Benally et al., 2022). These actions 

form the basis of geometric argumentation and reasoning, as learners use their bodies to represent, 

explore, and communicate geometric properties (Palatnik & Marco, 2024). 

Embodiment and dynamism are constitutive to geometric reasoning, whether observable by others or 

only covertly experienced by individuals through multimodal processes, like mental transformations, 

or in the form of imaginary auxiliary constructions. We speculate an experiential spectrum between 

covert and overt multimodal mental activity. We further assume that covert and overt aspects of 

mathematical reasoning afford complementary contributions: at times, it is helpful to imaginatively 

manipulate a geometric structure, unbound by available media, whereas, at other times, it could be 

vital to materially realize these mental figments in the form of publicly inspectable models. A case in 

point is PWW-based activities, where learners engage in gap-filling, which is the process of 

identifying missing components in visual representation and constructing formal proof (Marco et al., 

2022). In the absence of formal symbolic displays, PWW artifacts provoke mathematical thinking 

and support legitimate forms of argumentation (Nelsen, 1993); they help learners bridge embodied 

experiences and formal argumentation. Indeed, Marco and Shvarts (2024) implicated several key 

sensory-motor processes involved in gap-filing. As such, engaging students in interpreting PWW 

diagrams fosters opportunities to experience authentic mathematical reasoning, which, as Lakatos 

(1976) insisted, is the actual lived phenomenological underbelly of the eventual written proofs.   



 

 

 

 

Still, nurturing students’ capacity to understand PWW—what they are as epistemic forms and what 

epistemic games we are to play with them (Collins & Ferguson, 1993)—may take holistic 

entrainment. From a didactical perspective, one might wish to scaffold mathematics students’ 

epistemic practices, cognitive routines, and interpersonal argumentation by way of occasioning for 

them opportunities first to engage in the overtly manifest enactment of geometric reasoning prior to 

introducing problems more so conducive to covert reasoning. One powerful cultural tradition 

incorporating overt geometric actions is construction activities, for example, the historical 

pedagogical methodology established by Friedrich Fröbel (Brosterman, 1997). Whereas Fröbel 

designed his geometry construction tasks for kindergarten students, our philosophical and theoretical 

commitment to embodiment perspectives, as well as our empirical research, have led us to believe 

that high-school students, too, should build knowledge through building objects (Palatnik & 

Abrahamson, 2022). Namely, implicit to the hands-on pedagogical regimens characteristic of our 

studies into geometry education is an enactivist argument that humans are life-long sensorimotor 

learners—we never actually graduate the sensorimotor stage Piaget theorized as ending in early 

childhood (Abrahamson, 2022). Yet these polemic epistemological debates would avail from 

empirical data. As such, as we now argue, introducing material stuff into geometry pedagogy may 

shift the focus of research on geometry pedagogy, drawing attention to students’ authentic praxis and 

multimodal phenomenology of manipulating concrete objects, possibly revealing the critical 

cognitive roles of perception and action that embodied mathematics-education researchers allege.  

Recent research on embodied learning in proving and argumentation has largely focused on gestures’ 

role in mathematical reasoning. Walkington et al. (2019) show how collaborative gestures support 

group reasoning, while Nathan et al. (2021) highlight that dynamic gestures may enhance proof 

production by simulating geometric transformations. While these studies provide valuable insights 

into the body’s role in mathematical reasoning, they focus almost exclusively on gestures as the 

manifestation of embodied learning. A notable gap remains in understanding other forms of embodied 

cognition, such as physical interaction with manipulatives, sensorimotor experiences, or spatial 

reasoning through body movement, and how these contribute to mathematical proving and 

argumentation. Furthermore, research in authentic classroom settings, where students and teachers 

collaboratively develop embodied argumentation, is still missing. Further research is needed to 

investigate these broader manifestations of embodied learning in various educational contexts. 

The research questions guiding our study were: What are the roles of motor action and sensory 

perception in mathematical argumentation? What is the educational potential of fostering 

opportunities for embodied argumentation in geometry instruction? 

Illustrative case study of embodied argumentation 

Our empirical context is a spatial geometry activity in which five pre-service mathematics teachers 

participated voluntarily: Aya, Gail, Ruth, Tim, and Yoni (pseudonyms). They were tasked to 

construct and analyze a body-scale Platonic solid (Figure 1). Whereas we had used this activity 

extensively in researching geometry education (Benally et al., 2022; Palatnik & Abrahamson, 2022, 

under review; Rosenbaum et al., 2024), we had yet to examine experiences related to argumentation. 



 

 

 

 

The session was audio-video recorded. During the activity, three participants wore mobile eye-

tracking (MET) devices (Pupil Lab Neon), generating Multimodal Learning Analytics (MMLA) data.  

Our data further comprised a stimulated-recall group interview, in which participants discussed their 

experience of collaboratively constructing the model. We prepared the activity transcript, juxtaposing 

the three MET sources and adding photos to capture movements, actions, and gestures. We 

transcribed the SRI interview. We coded data by marking key moments in the construction and 

exploration processes to capture elements of cooperative action and argumentation. Utterances were 

transcribed and coded, marking aspects of perception and action. We later juxtaposed key video 

moments in the construction process with relevant testimonials from the stimulated-recall interview. 

We focus our analysis on the episode that begins at the 16th minute of the activity when the 

participants had already successfully constructed the icosahedron model and answered questions 

about its number of edges, vertices, and faces. The next question, however, presented a different 

challenge: “Assume the polyhedron was placed on one of its faces and filled with water. What would 

the shape of the water’s surface be?” 
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b 

 
c 

 
d 

 

Because this is here, 

[slides her right hand 

down along the edge, 

starting from the top 

base (top blue 

segment on 1e)] 

that is there. 

Symmetry. [slides 

her left hand up 

along the edge from 

the bottom base 

(bottom blue 

segment on 1e), 

establishing 

symmetry] 

And then we have… 

[puts both hands on 

the ends of the center 

edge, where her 

previous movements 

had ended; slides her 

hands 

simultaneously to the 

middle of the edge] 

this  

[The meeting point 

(M on 1e) is the 

middle of the edge 

and precisely at half 

the model's height 

when it stands on the 

face. 

 
e 

Note: (a)-(d) blue arrows indicate the movement of Gail’s hands; a red circle is an eye-tracking marker of Tim’s 

gaze; (e) a scheme of Gail’s argumentation and the form of the cross-section—dodecagon 

Figure 1: Gail’s embodied argumentation 

The participants perceived this problem as non-trivial. Aya remarked, “Oh, interesting, because it’s 

not... no, it’s not symmetric. Part of (the edges) will be cut in the middle, and part will be cut…” 

Realizing they needed to establish the height of the cross-section, the participants quickly began 

approximating the position of the model’s half-height above the ground. Yoni intuitively placed his 

hand on an edge close to the correct height but expressed uncertainty. Other participants offered 

suggestions on where the half-height might be located and, based on their approximations, attempted 

to count the vertices of the imagined cross-section. They debated between a pentagon and a hexagon 

(both suggestions are incorrect) but were unsure of the correctness of the answer. 



 

 

 

 

The group then split into two sub-groups, which, due to the large physical size of the model, became 

separated: Aya and Yoni on one side and Ruth, Gail, and Tim on the other. While partially aware of 

each other’s actions, they worked somewhat independently. Aya first suggested that the cross-section 

at half-height would include one of the vertices. Aya and Yoni then agreed that two vertices on the 

same edge were not the same height from the ground. Their argumentation was supported by the 

observation of the model while touching the vertices, sliding the hands along the edges, simulating 

and comparing each other actions 

Meanwhile, Gail engaged in searching for the half-height in a different way. First, she approximated 

the half-height of the icosahedron by comparing it to the distance between the palms of her hands put 

vertically. She took several such measurements with her hands. Then, she stepped back to change her 

perspective to be able to capture the whole model from a distance. She observed the model from 

different angles. At 16:08, when the instructor asked, “Where is it, exactly, half of a height?” Tim 

initially supported the idea that it was located at one of the vertices. However, Gail confidently 

stepped toward the model and indicated (correctly) horizontally with the palm of her hand: “No. This 

is half of a height.” When the instructor asked, “Why is this half of a height?” Gail produced a concise 

argument through a series of three coordinated actions (Figure 1). 

Tim’s eye-tracking data revealed that he followed Gail’s gestures closely. His gaze tracked each 

movement (marked by a red circle in Figure 1). Tim fixed his gaze and pointed at the midpoint of the 

edge before Gail completed her third movement. Based on this MMLA data, we conclude that he 

understood the argument before she finished her demonstration. He exclaimed, “Wow, cool!” 

recognizing the solution. 

 
a 

 
b 

 
c 

 
d 

“Yes. Because this 

[slides a right hand 

down] 

and this are the same 

height.[slides a right hand 

up] 

And here, [slides both 

hands simultaneously 

toward the edge’s middle] 

this is its middle. 

 

Note:(a)-(d) blue arrows indicate the movement of Tim’s hands; a red circle is an eye-tracking marker of Aya’s 

gaze; Gail continues to hold her hands, indicating the half-height point 

Figure 2: Tim’s embodied argumentation 

Note that the eye-tracking and audio data of Aya and Yoni revealed that they were not yet aware of 

Gail’s embodied proof. Having endorsed Gail’s argument, the instructor directed the other subgroup’s 

attention: “Guys, did you hear what Gail said?” This prompted Aya, Yoni, and Ruth to look toward 

the first group, and Tim quickly took over the explanation (see Figure 2). While Tim’s actions enact 



 

 

 

 

the same chain of reasoning as Gail’s, his actions are not precisely the same—he captured the essence 

of argumentation while varying the movements’ motorics.  

Further, the participants established that the cross-section had 12 vertices: six midpoints of the edges, 

as Gail demonstrated, and six additional points (see Figure 1e), which they found using a spare 

wooden edge as a line of intersection of the cross-section plane with the icosahedron’s edges.  

Discussion 

The illustrative case study shows that embodied argumentation is not merely an aid but an integral 

part of how pre-service teachers construct and communicate geometric proofs (cf., Alač & Hutchins, 

2004, on scientific reasoning). The analysis of the icosahedron task reveals how physical actions and 

perceptual processes constitute the mathematical argumentation of pre-service teachers.  

Firstly, Gail’s embodied argumentation exemplifies how a sequence of physical actions can serve as 

a form of mathematical proof. By sliding her hands along the edges and establishing symmetry, she 

transformed an abstract geometric property into a concrete perceptual experience for her and the 

group. This aligns with and expands Schenck et al. (2020), who argue that gestures externally 

represent geometric relationships, making abstract concepts accessible. 

The activity in which a group of peers first constructed and then explored the model prepared Gail 

and other participants to establish a more intimate connection to the mathematical object to 

externalize their reasoning, supporting both her insight and other arguments of the group (see Nathan 

et al., 2021 on intuition, insight, and proof). When she prepared her argumentation, Gail used her 

hands to approximate distances and moved toward and from the model, thus changing perspective 

and angles of view (literally zooming in and out of the model). Gail’s embodied argumentation 

emerged gradually through simulation, changes of gaze, and repositioning of the body in relation to 

the model (see also Palatnik & Marco, 2024). 

Secondly, Tim’s eye-tracking data reveals how constructing mathematical arguments involves a 

succession of perception-action loops (Shvarts et al., 2021). Tim’s ability to follow Gail’s gestures 

and anticipate the identification of the midpoint of the edge demonstrates how perception is tightly 

coupled with physical action in embodied argumentation. As Walkington et al. (2018) suggest, 

gestures can act as collaborative tools, allowing learners to share their reasoning. In this case, Tim’s 

tracking of Gail’s physical movements enabled him to quickly understand and replicate her argument 

for the rest of the group.  

Moreover, the internalization, reproduction, and endorsement of Gail’s embodied proof by her peer—

a future teacher, suggests he finds it valid. Given that the participants are prospective teachers, this 

acceptance provides a valuable opportunity to influence classroom culture by broadening the scope 

of argumentation to include movement, manipulation, and gestures involving physical models. In the 

milieu of the embodied collaborative construction activity, the group accepted the argument as valid. 

In contemporary classroom culture, mathematical proof is typically limited to formal, symbolic logic 

(Herbst & Brach, 2006). However, embodied argumentation—which includes physical actions, 

manipulation of artifacts, and gestures—offers a compelling expansion of what constitutes valid 



 

 

 

 

reasoning. Rooted in embodied cognition, which posits that human thought is deeply interconnected 

with physical interactions (Barsalou, 2008), this form of reasoning is particularly relevant in 

classroom discourse, where participants can perceive each other actions on shared artifacts. 

Manipulating objects or engaging in physical interactions, such as rotating models, constructing 

auxiliary elements, or positioning geometric shapes, often reveals mathematical relationships that 

might be difficult to express verbally (Palatnik et al., 2023). These actions, along with gestures such 

as pointing to a diagram or highlighting spatial connections, are not supplementary but integral to 

mathematical argumentation. Expanding the definition of proof to include embodied argumentation 

aligns with the interactive nature of classroom learning, where norms are shaped by teachers and 

students collaboratively constructing knowledge (Stylianides et al., 2022). 

Expanding the definition of proof to include embodied argumentation reflects the multimodal ways 

students interact with mathematical notions, promoting a more inclusive understanding of proof. By 

fostering a classroom culture that embraces embodied argumentation, educators can better support 

students’ reasoning processes, particularly in spatial and geometric contexts, where physical 

interaction with objects significantly enhances comprehension. This shift also echoes practices in 

professional communities, such as in research settings, where manipulating physical models and 

performing gestures play a role in the collaborative negotiation of meaning and problem-solving (e.g., 

Roth, 2001). Embodied argumentation may be similarly integrated into sedentary classroom 

practices, including PWW-based activities (Marco et al., 2022), where reasoning based on visual 

information is a stepping stone for the gap-filling process, leading to more formal proving methods.  

In conclusion, recognizing embodied argumentation as a legitimate form of proof in classroom 

discourse expands the cultural norms of mathematics education, making it more reflective and more 

inclusive of how humans do mathematics, naturally integrating its embodied and formal aspects. 
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